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new solutions this creates for nations, business and for everyday life, we must also
think about how to maximize the gains for society and our environment at large.”
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Today: Self-supervised learning for geospatial data

What is self-supervised learning?

Normalizing flows for downscaling geospatial data

A pretext task for temporal downscaling of geospatial data
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Unsupervised Deep Learning

e Supervised DL. Prediction loss is a function of the label, v,
and the network’s output on input x.

Network output Loss function

fw(x) =9 L(y,y)

* Unsupervised DL. Prediction loss is only a function of x,
and the network’s output on input x. There is no label, y.

Network output Loss function

fw(x) =2 L(z,x)



Self-Supervised Approach to Unsupervised learning

Self-supervised learning
A state-of-the-art approach to (deep) unsupervised learning

Design a pretext task:

0 Design a supervised learning task using only the available data.
O Train a model on this task such that,

o the learned features (or the learned posterior over a feature space)
will be useful for another (down-stream) task.



Pretext Task: Example

Classic example of a pretext task: Autoencoder

* Train a neural network in an unsupervised way
e Use the unlabeled data both as input, and to evaluate the output

 After training, the bottleneck layer will be a compact representation of the

input distribution
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Autoencoder: The parameters of the encoder and
decoder networks are trained to make the output
approximate the input. After training on many input
examples, the parameters of the bottleneck layer form
a compact representation of the input distribution.

Output




Variational Autoencoder (VAE)

Learn a distribution over latent representations, instead of a single encoding
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[Rezende & Mohamed, ICML 2015] - “ - -\ ’ ~n . .‘ -

Can be viewed as extension of VAE beyond Gaussian assumption on latent space

Learn a series of invertible transformations, {f;}, from a simple prior on latent
space, Z, to allow for more informative distributions on the latent space:

2k = fro fk—10---0 fi(20)
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Normalizing Flows: Application to Spatial Downscaling

[Groenke, Madaus, & Monteleoni, Climate Informatics 2020]

ERA: reanalysis data, 1° resolution; WRF: numerical weather model prediction, 3 resolution
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Downscaling as Domain Alignment

* Domain alignment task: given random variables X, Y, learn a mapping f: X 2 Y
such that, for any x, € Xand y, €YY,

f(z;) ~ Py F~ (yi) ~ Px

* Downscaling as domain alignment
e Given i.i.d. samples at low resolution (X) and high-resolution (Y)

* Learn the joint PDF over X and Y by assuming conditional independence over
a shared latent space Z,

Pxy (z,y) Z/

Pavz(e.y.2)ds = [ Plal2)P(yl2)Po(e)d:
AYA

zZEL

* Model P(x|z), P(y|z) using AlignFlow [Grover et al. 2020]

 Starting with a simple prior on P,, learn normalizing flows
* No pairing between x and y examples needed!



ClimAlign architecture
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ClimAlign: Unsupervised, generative downscaling
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General downscaling technique via domain alignment with normalizing flows
[AlignFlow: Grover et al., AAAI 2020][Glow: Kingma & Dhariwal, NeurlPS 2018]

* Unsupervised: do not need paired maps at low and high resolution

* Generative: can sample from posterior over latent representation OR sample
conditioned on a low (or high!) resolution map

* Intepretable, e.g., via interpolation

[Groenke, Madeus, & Monteleoni, Climate Informatics 2020]



Outline

What is self-supervised learning?

Normalizing flows for downscaling geospatial data

A pretext task for temporal downscaling of geospatial data

19



The problem

o Climate change applications involve geospatial data evolving with time

o Observation data that has been gridded over the globe using data assimilation

o Simulations output by physics-driven models (NWP, GCM, RCM)

e These are tensors of real-values over latitude, longitude, time,
and possibly over multiple climatological variables

o Computer Vision algorithms for “spatiotemporal data,” rely on
properties of video data that do not generalize well to geospatial data

o e.g., depth, edges, and “objects”

o vs. ephemeral patterns in fluids



STINT: Self-supervised Temporal Interpolation

SuperSloMo STint Ground Truth

IPSL
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State-of-the-art Computer Vision for
temporal interpolation of video uses
Optical Flow.

This is problematic on geospatial dataj




A pretext task for temporal downscaling

STINT: Self-supervised Temporal Interpolation for Geospatial Data
[Harilal, Hodge, Subramanian, & Monteleoni, 2023]
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A pretext task for temporal interpolation

STINT: Self-supervised Temporal Interpolation for Geospatial Data
[Harilal, Hodge, Subramanian, & Monteleoni, 2023]
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STINT: Self-supervised Temporal Interpolation
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STINT: Self-supervised Temporal Interpolation
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STINT: Self-supervised Temporal Interpolation
\_f_\ -Su-perSIOMo 'STint Ground Truth

Please see Nidhin Harilal’s

poster today, for details!

[Harilal, Hodge, Subramanian, & Monteleoni, 2023]




Summary and Outlook

Normalizing flows for spatial downscaling of geospatial data
Does not require temporal alignment of the coarse and fine scale data

Works best when data is spatially aligned

A pretext task for temporal downscaling of geospatial data

Works best when input data is spatially aligned

Is there one pretext task for downscaling in both space and time?

Does it provide features that are useful for other downstream tasks?

Implications for data equity in climate and environmental sciences
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“Many majority-
Black parts of the
Southeast [USA]
are relatively far
from radar sites,
meaning that it’s
harder to gather
information about
storms impacting

Are Black Americans Underserved b

Network?
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these areas.”

Credit: Jack Sillin, in
[McGovern et al.,

Environmental Data
Science, 2022]

Weather radars detect storms
by sending beams of energy out
into the atmosphere and
listening for energy that
bounces back off rain, snow,
hail, and anything else in the
atmosphere.

The farther a storm is from a
radar site, the less information |-
we can get about it due to the |
beam height rising farther off
the ground, and the beam width|
expanding leading to lower
resolution.

High resolution radar data near
the ground can be critical in
many situations such as when
severe thunderstorms and
tornadoes threaten.

Many majority-Black parts of
the Southeast are relatively far
from radar sites, meaning that
it's harder to gather information
about storms impacting these

areas.
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Semi/Unsupervised learning: Equity motivation

e Train models in high-data regions and apply them in low-data regions
o Can evaluate them against supervised learning models in high-data regions

o Can fine-tune them using the limited data in the low-data regions

o Contribution to climate data equity
o Local scales (e.g. legacy of environmental injustice in USA)

- Global scales:

m Global North historically emitted more carbon; Meanwhile there’s typically more data there

s Global South is suffering the most severe effects of the resulting warming
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o ENVIRONMENTAL
DATA SCIENCE

An interdisciplinary, open access journal dedicated to the potential of
artificial intelligence and data science to enhance our understanding of
the environment, and to address climate change.

Data and methodological scope: Data Science broadly defined, including:
Machine Learning; Artificial Intelligence; Statistics; Data Mining; Computer Vision; Econometrics

Environmental scope, includes:

Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry &
physics, paleoclimatology)

Climate change (including carbon cycle, transportation, energy, and policy)

Sustainability and renewable energy (the interaction between human processes and ecosystems, including
resource management, transportation, land use, agriculture and food)

Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)

Societal impacts (including forecasting, mitigation, and adaptation, for environmental extremes and hazards)

Environmental policy and economics
Q@envdatascience

OPEN aACCESS

www.cambridge.org/eds
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Climate Informatics: using Machine Learning ((C!’
to address Climate Change

2008 Started research on Climate Informatics, with Gavin Schmidt, NASA

2010 “Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Application Paper Award]
2011 Launched International Workshop on Climate Informatics, New York Academy of Sciences
2012 Climate Informatics Workshop held at NCAR, Boulder, for next 7 years

2013 “Climate Informatics” book chapter [M et al., SAM]

2014  “Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurlPS Tutorial]
2015 Launched Climate Informatics Hackathon, Paris and Boulder

2018 World Economic Forum recognizes Climate Informatics as key priority
2021 Computing Research for the Climate Crisis [Bliss, Bradley @ M, CCC white paper]

2022  First batch of articles published in Environmental Data Science, Cambridge University Press

2023 12t Conference on Climate Informatics and 9% Hackathon, Cambridge, UK
2024  13% Conference on Climate Informatics, April, Turing Institute, London



En\?lronme,;;m] DCITCI Sc:|en
oncydiion s g clysgndad,

&Y 'S new th%ISQGﬂfér s 5N
" hosted by the University slorado- loulder & CIRES‘*:T_

W'th key partners 8!

T




