
Artur	Czumaj
Department	of	Computer	Science
Centre	for	Discrete	Mathematics	
and	its	Applications	(DIMAP)

University	of	Warwick

Testing	Neural	Networks

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.:

AAAAAAAAAAAAA

Christian	Sohler
Computer	Science	Institute

University	of	Cologne

Central question

Testing a Neural Network

We will view a (trained, feedforward) neural network as a circuit:
§ receives an input vector and
§ computes an output

A neural network may be viewed as computing a function 𝑓 of the inputs

Testing a Neural Network

Goal: formulate an approach that allows us to obtain
 a mathematical understanding of the correspondence
 of the (local) structure of the networks
 with the function of its input it computes.

Our method of choice: framework of property testing

Underlying idea behind property testing:
§ solve a relaxed decision problem by inspecting only a small part of the input
• for example, by sampling

Property	Testing

§ Distinguish inputs that have specific property
 from those that are far from having the property (Rubinfeld-Sudan’96)

Benefits:
§ May be a natural question to ask
§ May be just as good when data constantly changing
§ Gives fast sanity check to rule out very “bad” inputs (i.e., restaurant bills) or to

decide when expensive processing is worth it

Testing a Neural Network

Underlying idea behind property testing: solve a relaxed decision problem by inspecting
only a small part of the input (for example, by sampling).

A property testing algorithm is given
§ query access to an object and
§ the objective is to
• accept objects that have a certain property of interest and
• reject objects that are far from having that property.

In this talk:
§ objects = neural networks
§ properties = functions or properties of functions

Testing a Neural Network

Why property testing?
§ Not necessarily because neural networks are massive and we need

sublinear-time algorithms
§ Our view: property testing is a tool to reveal relations between the

local structure of an object and its global structure
• this in turn: can provide combinatorial insights about the

structure of an object

§ Our goal: improve our understanding of the relation between the
network structure and the computed function

Testing a Neural Network

Why property testing?

§ Relaxed decision setting in property testing has some appealing
properties in the context of understanding neural networks:
• typically, we’d like a neural network to be robust to small changes

in the network;
• to cope with risks of adversarial attacks
• to accommodate network training of dropout used to improve

generalization
e.g., a random fraction of input nodes is dropped during training for

each training example

Testing a Neural Network

We introduce a property testing model for a fully connected feedforward
network with
ReLU activation function (without bias) and hidden layers
§ We will view the network as a circuit that computes a Boolean function
§ Our objective: design property testing algorithms that
• sample weights of the network and
• accept, if the network computes a certain function and
• reject, if the network is (𝜀, 𝛿)-far from computing the function

Network is (𝜀, 𝛿)-far from computing the function 𝑓 if
• one has to change the network in more than an 𝜀-fraction of its size
• to obtain a function that differs from the target function on < 𝛿-fraction

of inputs

Testing a Neural Network

We introduce a property testing model for a fully connected feedforward
network with
ReLU activation function (without bias) and one hidden layer
§ We will view the network as a circuit that computes a Boolean function
§ Our objective: design property testing algorithms that
• sample weights of the network and
• accept, if the network computes a certain function and
• reject, if the network is (𝜀, 𝛿)-far from computing the function

We will not consider a bias in the activation function
• we believe the main challenge is to understand the non-linearity of the ReLU

function;
• one can easily simulate a bias in a network by allowing some inputs that are always 1

(and in practice, a network that is trained without bias will typically learn the bias)

Testing a Neural Network

We introduce a property testing model for a fully connected feedforward
network with
ReLU activation function (without bias) and one hidden layer
§ We will view the network as a circuit that computes a Boolean function
§ Our objective: design property testing algorithms that
• sample weights of the network and
• accept, if the network computes a certain function and
• reject, if the network is (𝜀, 𝛿)-far from computing the function

We will assume most of the time that the number of input neurons and
neurons at the hidden layer will be polynomially related (in practice, they
are typically within a constant factor of each other)

Testing a Neural Network

Main conceptual contribution:
§ a model that allows a nontrivial study of neural networks from the

lens of property testing

Main technical contribution:
§ study of basic Boolean functions and properties
§ showing that some of them can be efficiently tested

Testing a Neural Network

§ Underlying model:

hidden layer(s)

input

output

A simple feedforward network with ReLU activation function

We consider a feedforward network with one hidden layer and ReLU activation function.
§ The network is fully connected,
§ has 𝑛 input nodes labeled {1, . . . , 𝑛},
§ a hidden layer with 𝑚 nodes labeled {1, . . . , 𝑚}, and
§ one output node.

output

𝑦!

𝑥!

𝑦" 𝑦# 𝑦$%" 𝑦$%! 𝑦$

𝑥" 𝑥# 𝑥&%" 𝑥&𝑥&%!

= sgn ReLU(𝑤!, 𝑤", … ,𝑤# $ ⋅ ReLU(𝑦!),… , ReLU(𝑦#))
= sgn(ReLU(𝑤$ ⋅ ReLU(𝑦))) = sgn(ReLU(𝑤$ ⋅ ReLU(𝐴𝑥)))

𝑤$
𝑤$%"

𝑤#

𝑎!!

𝑤! 𝑤$%!

input value of 𝑦% equals ∑&'!(𝑎&% ⋅ 𝑥&
𝑤"

𝑎!#
𝑎!"

𝑎&,$
𝑎&,$%!

input nodes

hidden layer nodes

output value of 𝑦% is ReLU(∑&'!(𝑎&% ⋅ 𝑥&)

𝑎() , 𝑤(∈ [−1,1] ReLU activation function: 𝑅𝑒𝐿𝑈 𝑢 = max{0, 𝑢}

Network is defined by matrix 𝐴 ∈ −1, 1 7×9 and vector 𝑤 ∈ −1, 1 7

Computed function: 𝑓 𝑥 = sgn(ReLU(𝑤: ⋅ ReLU(𝐴𝑥)))

output value is equal to sign of ReLU(∑!"#$ 𝑤! ⋅ 𝑦!)

sgn 𝑥 ≔	61	 if	𝑧 > 0
0	 otherwise

output

𝑦!

𝑥!

𝑦" 𝑦# 𝑦$%" 𝑦$%! 𝑦$

𝑥" 𝑥# 𝑥&%" 𝑥&𝑥&%!

= sgn ReLU(𝑤!, 𝑤", … ,𝑤# $ ⋅ ReLU(𝑦!),… , ReLU(𝑦#))
= sgn(ReLU(𝑤$ ⋅ ReLU(𝑦))) = sgn(ReLU(𝑤$ ⋅ ReLU(𝐴𝑥)))

𝑤$
𝑤$%"

𝑤#

𝑎!!

𝑤! 𝑤$%!

input value of 𝑦% equals ∑&'!(𝑎&% ⋅ 𝑥&
𝑤"

𝑎!#
𝑎!"

𝑎&,$
𝑎&,$%!

input nodes

hidden layer nodes

output value of 𝑦% is ReLU(∑&'!(𝑎&% ⋅ 𝑥&)

𝑎() , 𝑤(∈ [−1,1] ReLU activation function: 𝑅𝑒𝐿𝑈 𝑢 = max{0, 𝑢}

Network is defined by matrix 𝐴 ∈ −1, 1 7×9 and vector 𝑤 ∈ −1, 1 7

Computed function: 𝑓 𝑥 = sgn(ReLU(𝑤: ⋅ ReLU(𝐴𝑥)))

output value is equal to sign of ReLU(∑!"#$ 𝑤! ⋅ 𝑦!)

sgn 𝑥 ≔	61	 if	𝑧 > 0
0	 otherwise

We can naturally extend the model to
• allow multiple hidden layers
• allow multiple output bits

ReLU network as a binary classifier

We interpret the network as a binary classifier:
§ the network assigns each input vector to one of two classes, which we define as 0 and 1.
If the output value of the network is ≤ 0 we assign class 0, if it is > 0 we assign class 1.

We focus on the setting when 𝑥	 ∈ 0, 1 9 is a binary vector.

ReLU network is defined by a pair (𝐴, 𝑤)	where 𝐴 ∈ −1, 1 7×9 and 𝑤 ∈ −1, 1 7

è the neural network defines a function 𝑓 ∶ 0, 1 9 	→ 	 {0, 1} that computes
𝑓 𝑥 = sgn(ReLU(𝑤: ⋅ ReLU(𝐴𝑥)))

Testing a Neural Network

Properties of Boolean functions:
A property of Boolean functions is a family 𝑃 = ⋃9∈ℕ𝑃9,
§ where 𝑃9 is a set of Boolean functions 𝑓: 0, 1 9 → {0, 1}

ReLU network being far from computing a function:
Let (𝐴, 𝑤)	be a ReLU network with 𝑛 input nodes and 𝑚 hidden layer nodes.
(𝐴, 𝑤)	is called (𝜀, 𝛿)-close to computing a function 𝑓: 0, 1 9 → {0, 1}, if
§ one can change the matrix 𝐴 in ≤ 𝜀𝑛𝑚 places and the weight vector 𝑤 in ≤ 𝜀𝑚	places
§ to obtain a ReLU network that computes a function 𝑔 such that

Pr[𝑔(𝑥) ≠ 𝑓(𝑥))] ≤ 𝛿,	
 where 𝑥 is chosen uniformly at random from 0, 1 9.
If (𝐴, 𝑤) is not (𝜀, 𝛿)-close to computing 𝑓 è (𝐴, 𝑤) is (𝜀, 𝛿)-far from computing 𝑓

Testing a Neural Network

Network is (𝜀, 𝛿)-close to
computing a function 𝑓	:
we can edit the network to
§ make it to compute 𝑓 on
(1 − 𝛿)-fraction of the inputs

§ by modifying an 𝜀-fraction of
weights at every layer

hidden layer(s)

input

output

Testing a Neural Network

Properties of Boolean functions:
A property of Boolean functions is a family 𝑃 = ⋃9∈ℕ𝑃9,
§ where 𝑃9 is a set of Boolean functions 𝑓: 0, 1 9 → {0, 1}

ReLU network being far from computing a function:
Let (𝐴, 𝑤)	be a ReLU network with 𝑛 input nodes and 𝑚 hidden layer nodes.
(𝐴, 𝑤)	is called (𝜀, 𝛿)-close to computing a function 𝑓: 0, 1 9 → {0, 1}, if
§ one can change the matrix 𝐴 in ≤ 𝜀𝑛𝑚 places and the weight vector 𝑤 in ≤ 𝜀𝑚	places
§ to obtain a ReLU network that computes a function 𝑔 such that

Pr[𝑔(𝑥) ≠ 𝑓(𝑥))] ≤ 𝛿,	
 where 𝑥 is chosen uniformly at random from 0, 1 9.
If (𝐴, 𝑤) is not (𝜀, 𝛿)-close to computing 𝑓 è (𝐴, 𝑤) is (𝜀, 𝛿)-far from computing 𝑓

Testing a Neural Network

Properties of Boolean functions:
A property of Boolean functions is a family 𝑃 = ⋃9∈ℕ𝑃9,
§ where 𝑃9 is a set of Boolean functions 𝑓: 0, 1 9 → {0, 1}

ReLU network being far from computing a function:
Let (𝐴, 𝑤)	be a ReLU network with 𝑛 input nodes and 𝑚 hidden layer nodes.
(𝐴, 𝑤)	is (𝜀, 𝛿)-close to computing a function 𝑓: 0, 1 9 → {0, 1} with property 𝑃, if
§ one can change the matrix 𝐴 in ≤ 𝜀𝑛𝑚 places and the weight vector 𝑤 in ≤ 𝜀𝑚	places
§ to obtain a ReLU network that computes a function 𝑔 such that

Pr[𝑔(𝑥) ≠ 𝑓(𝑥))] ≤ 𝛿,	
 where 𝑥 is chosen uniformly at random from 0, 1 9.
If (𝐴, 𝑤) is not (𝜀, 𝛿)-close to computing 𝑓 è (𝐴, 𝑤) is (𝜀, 𝛿)-far from computing 𝑓 with 𝑃

Extension to properties of functions

Testing a Neural Network

Property 𝑃 = ⋃9∈ℕ𝑃9 of Boolean functions is testable with query complexity 𝑞 𝜀, 𝛿, 𝑛,𝑚
§ if for every 𝑛,𝑚 ∈ 𝑁, 𝜀,𝛿 ∈ (0, 1)
§ there exists an algorithm that
§ receives parameters 𝑛,𝑚, 𝜀, 𝛿	as input and
§ is given query access to a ReLU network with 𝑛 input nodes and 𝑚 hidden layer nodes,
§ that queries the ReLU network in at most 𝑞(𝜀, 𝛿, 𝑛,𝑚)	many places,
§ accepts with probability at least 2/3 if the network computes a function from 𝑃9, and
§ rejects with probability at least 2/3 every network that computes a function that is
(𝜀, 𝛿)-far from 𝑃9.

A tester that accepts every function from 𝑃 with probability 1 is called one-sided tester.

If the function 𝑞 depends only on 𝜀 and 𝛿 we just say that the property 𝑃 is testable.

Testing a Neural Network: What can we show?

Our key findings:
§ study of basic functions
• understanding testability of constant 0-function, OR-function, and near-constant

functions – for one and multiple hidden layer networks
§ distribution-free model is too strong
§ we can test functions faster than in the vanilla testing algorithm
§ …

Testing a Neural Network:
does it compute constant 0 function?

§ We consider most basic functions – to understand which models are suitable

§ Determining whether a network computes the constant 0-function is NP-hard

Testing a Neural Network:
does it compute constant 0 function?

Vanilla testing algorithm:
§ Sample many inputs at random and check if the network computes 0 on all of them

§ There are networks that are is (𝜀, 𝛿)-far from computing the constant 0-function (for
constant 𝜀 and 𝛿 = 2<=(9)) that require 2@(9) samples

§ In our model: we can do it MUCH better

Testing a Neural Network: constant 0-function

Theorem: Let (𝐴, 𝑤) be a ReLU network with 𝑛 input nodes and 𝑚 hidden layer nodes.
Let 𝑒<9/BC ≤ 𝛿 < 1 and let 0 < 𝜀, 𝜆 < 1/2.
Then AllZeroTester(𝜀, 𝛿, 𝜆, 𝑛,𝑚) with query access to 𝐴 and 𝑤
§ accepts with prob ≥ 1	 − 	𝜆 if the ReLU network (𝐴, 𝑤) computes the 0-function;
§ rejects with prob ≥ 1	 − 	𝜆, if the ReLU network (𝐴, 𝑤) is (𝜀, 𝛿)-far from computing

the 0-function;
Furthermore, the algorithm queries 𝑂(logD(1/𝜀𝜆)/𝜀C) entries from 𝐴 and 𝑤.

Dependence 𝑒%&/#(≤ 𝛿 can be “moved” into the query complexity if 𝑛 and 𝑚 are polynomially related.

sample nodes and evaluate the restricted network with a suitable bias
at the output node whether it computes the constant 0-function

Testing a Neural Network: constant 0-function

Theorem: Let (𝐴, 𝑤) be a ReLU network with 𝑛 input nodes and 𝑚 hidden layer nodes.
Let 𝑒<9/BC ≤ 𝛿 < 1 and let 0 < 𝜀, 𝜆 < 1/2.
Then AllZeroTester(𝜀, 𝛿, 𝜆, 𝑛,𝑚) with query access to 𝐴 and 𝑤
§ accepts with prob ≥ 1	 − 	𝜆 if the ReLU network (𝐴, 𝑤) computes the 0-function;
§ rejects with prob ≥ 1	 − 	𝜆, if the ReLU network (𝐴, 𝑤) is (𝜀, 𝛿)-far from computing

the 0-function;
Furthermore, the algorithm queries 𝑂(logD(1/𝜀𝜆)/𝜀C) entries from 𝐴 and 𝑤.

Dependence 𝑒%&/#(≤ 𝛿 can be “moved” into the query complexity if 𝑛 and 𝑚 are polynomially related.

1) if the network is (𝜀, 𝛿)-far from computing the constant 0-function then there exists an
input 𝑥 ∈ 0,1 9 on which the network has an output value of Ω(𝜀𝑛𝑚)
• sampling a constant number of hidden layer nodes one can approximate the output

value for this particular 𝑥 with sufficient accuracy so that the output value is Ω(𝜀𝑛𝑚)
2) we can also sample a constant number of input nodes and approximate the value at the

sampled hidden layer nodes in such a way that the value at the output node is positive

Testing a Neural Network: constant 0-function

Theorem: Let (𝐴, 𝑤) be a ReLU network with 𝑛 input nodes and 𝑚 hidden layer nodes.
Let 𝑒<9/BC ≤ 𝛿 < 1 and let 0 < 𝜀, 𝜆 < 1/2.
Then AllZeroTester(𝜀, 𝛿, 𝜆, 𝑛,𝑚) with query access to 𝐴 and 𝑤
§ accepts with prob ≥ 1	 − 	𝜆 if the ReLU network (𝐴, 𝑤) computes the 0-function;
§ rejects with prob ≥ 1	 − 	𝜆, if the ReLU network (𝐴, 𝑤) is (𝜀, 𝛿)-far from computing

the 0-function;
Furthermore, the algorithm queries 𝑂(logD(1/𝜀𝜆)/𝜀C) entries from 𝐴 and 𝑤.

Dependence 𝑒%&/#(≤ 𝛿 can be “moved” into the query complexity if 𝑛 and 𝑚 are polynomially related.

Algorithm accepts a network that computes the constant 0-function?
Claim: for all input vectors 𝑥 the sampled network computes the constant 0-function.
Consider the sample from the input nodes as being fixed
Restricting our network to the sampled input nodes can also be done by restricting the input
to vectors 𝑥 that are 0 for all input nodes that do not belong to the sample.
èour sampling approach = only sampling from the hidden layer
èconcentration bound + union bound over all è proof

Testing a Neural Network: constant 0-function

Theorem: Let (𝐴, 𝑤) be a ReLU network with 𝑛 input nodes and 𝑚 hidden layer nodes.
Let 𝑒<9/BC ≤ 𝛿 < 1 and let 0 < 𝜀, 𝜆 < 1/2.
Then AllZeroTester(𝜀, 𝛿, 𝜆, 𝑛,𝑚) with query access to 𝐴 and 𝑤
§ accepts with prob ≥ 1	 − 	𝜆 if the ReLU network (𝐴, 𝑤) computes the 0-function;
§ rejects with prob ≥ 1	 − 	𝜆, if the ReLU network (𝐴, 𝑤) is (𝜀, 𝛿)-far from computing

the 0-function;
Furthermore, the algorithm queries 𝑂(logD(1/𝜀𝜆)/𝜀C) entries from 𝐴 and 𝑤.

Dependence 𝑒%&/#(≤ 𝛿 can be “moved” into the query complexity if 𝑛 and 𝑚 are polynomially related.

A similar result can be shown for the OR-function

Testing a Neural Network: constant 0-function

Algorithm above has two-sided error (may err while accepting and rejecting)
Can we do the same with 1-sided error?

Theorem: Any tester for the constant 0-function that has one-sided error has query
complexity of Ω(𝑚).

At the same time: one can test with one-sided error with query complexity X𝑂(𝑚).

Similar results can be shown for the OR-function

Follows from the fact that if too few weights are specified, one can always
”complete” the network in such a way that it computes the constant 0-function

Testing a Neural Network: 0 and OR are central …

Theorem: Let (𝐴, 𝑤) be a ReLU network with 𝑛 input nodes and 𝑚 hidden layer nodes.

Let 0	 < 	𝛿	 ≤ 	1/2 and let 𝜀	 ≥ 2 !"#(%/')
) .

Then (𝐴, 𝑤) is (𝜀, 𝛿)-close to computing the OR-function or it is (𝜀, 𝛿)-close to computing
the constant 0-function.

This does not imply that all functions are pairwise (2𝜀, 2𝛿)-close as our distance measure
does not satisfy the triangle inequality.

Testing a Neural Network: 0 and OR are central …

Theorem: Let (𝐴, 𝑤) be a ReLU network with 𝑛 input nodes and 𝑚 hidden layer nodes.

Let 0	 < 	𝛿	 ≤ 	1/2 and let 𝜀	 ≥ 2 !"#(%/')
) .

Then (𝐴, 𝑤) is (𝜀, 𝛿)-close to computing the OR-function or it is (𝜀, 𝛿)-close to computing
the constant 0-function.

Corollary: Every property that contains the constant 0-function and the OR-function is
trivially testable.

A Boolean function 𝑓 is monotone, if for every 𝑥, 𝑦 ∈ 0,1 9, 𝑥 ≤ 𝑦	implies 𝑓(𝑥) ≤ 𝑓(𝑦).
A Boolean function is symmetric, if its value does not depend on the order of its arguments.

Corollary: Monotone/symmetric functions are testable.

Testing monotone properties

We consider also monotone properties.
A property 𝑃 is monotone, if it is closed under flipping bits in the truth table of any function
from the property from 0 to 1.

One can think of monotone properties as being defined by the set of minimal functions
under the operation of flipping zeros to ones. We call such a set a generator.

Theorem: Every monotone property is testable with query complexity logarithmically on
the size of the generator.

ReLU networks with multiple output bits

§ Our main focus was on a Boolean functions
§ We can extend some of the study to multiple output bits

For a vector 𝑢 = (𝑢B, … , 𝑢E), let sgn 𝑢 = (sgn 𝑢B , … , sgn(𝑢E))

Definition: A ReLU network with 𝑛 input nodes, 𝑚 hidden layer nodes and 𝑟 output node is
a pair (𝐴,𝑊) where 𝐴 ∈ −1, 1 7×9 and 𝑊 ∈ −1, 1 7×E. The function 𝑓: 0, 1 9 →
0, 1 E computed by a ReLU network (𝐴,𝑊) is defined as

𝑓(𝑥) ∶= 	sgn(ReLU(𝑊: · ReLU(𝐴𝑥)))

• All networks are close to a near-constant function
• Testing a near-constant function can be done with constant query complexity

Since for input 0, the output must be 0 è near-constant function = constant except for input 0

ReLU networks with multiple hidden layers

§ Our main focus was on a Boolean functions with one hidden layer
§ We can extend some of the study to multiple hidden layers

Network is (𝜀, 𝛿)-close to
computing a function 𝑓	:
we can edit the network to
§ make it to compute 𝑓 on
(1 − 𝛿)-fraction of the inputs

§ by modifying an 𝜀-fraction of
weights at every layer

hidden layer(s)

input

output

ReLU networks with multiple hidden layers and multiple output bits

Network is (𝜀, 𝛿)-close to
computing a function 𝑓	:
we can edit the network to
§ make it to compute 𝑓 on
(1 − 𝛿)-fraction of the inputs

§ by modifying an 𝜀-fraction of
weights at every layer

hidden layer(s)

input

output

• Testing a near-constant function can be done with constant query complexity

Distribution-free model?

Our main focus: the notion of being (𝜀, 𝛿)-far from a property defines the farness with respect
to the second parameter 𝛿 in terms of the uniform distribution.

Distribution-free model:
§ an unknown distribution 𝐷 over 0,1 9

§ query access: query(𝑖, 𝑗) – sample input 𝑦F ∈ 0,1 9 according to 𝐷 and return 𝑗th bit of 𝑦F

(𝐴, 𝑤)	is called (𝜀, 𝛿)-close to computing a function 𝑓: 0, 1 9 → {0, 1}, if
§ one can change the matrix 𝐴 in ≤ 𝜀𝑛𝑚 places and the weight vector 𝑤 in ≤ 𝜀𝑚	places
§ to obtain a ReLU network that computes a function 𝑔 such that

Pr[𝑔(𝑥) ≠ 𝑓(𝑥))] ≤ 𝛿,	
 where 𝑥 is chosen at random according to distribution 𝐷.

Theorem: For every constant 𝑘 > 0, every property tester for the constant
0-function in the distribution-free model has query complexity Ω(𝑛B<B/G)

Distribution-free model?

Our main focus: the notion of being (𝜀, 𝛿)-far from a property defines the farness with respect
to the second parameter 𝛿 in terms of the uniform distribution.

Distribution-free model:
§ an unknown distribution 𝐷 over 0,1 9

§ query access: query(𝑖, 𝑗) – sample input 𝑦F ∈ 0,1 9 according to 𝐷 and return 𝑗th bit of 𝑦F

(𝐴, 𝑤)	is called (𝜀, 𝛿)-close to computing a function 𝑓: 0, 1 9 → {0, 1}, if
§ one can change the matrix 𝐴 in ≤ 𝜀𝑛𝑚 places and the weight vector 𝑤 in ≤ 𝜀𝑚	places
§ to obtain a ReLU network that computes a function 𝑔 such that

Pr[𝑔(𝑥) ≠ 𝑓(𝑥))] ≤ 𝛿,	
 where 𝑥 is chosen at random according to distribution 𝐷.

Theorem: For every constant 𝑘 > 0, every property tester for the constant
0-function in the distribution-free model has query complexity Ω(𝑛B<B/G)

Summary

§ We introduced a property testing model to study neural networks
§ Gave some first results in this model

§ Large number of open questions regarding ReLU networks
• query complexity of testing dictatorship and juntas
• classify constant time testable properties with one- and two-sided error
• extend the results to inputs over the reals
• going beyond ReLU networks
• …

THANK YOU!

