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Q: Is it possible to accelerate Gradient Descent (GD)
without changing the algorithm?
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Introduction

Q: Can we accelerate Gradient Descent (GD) without changing the algorithm?

@ Instead, simply by a judicious choice of stepsizes?

GD Xk+1 = Xk — 7]ka(Xk)
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Introduction

Q: Can we accelerate Gradient Descent (GD) without changing the algorithm?

@ Instead, simply by a judicious choice of stepsizes?

GD Xk+1 = Xk — 7]ka(Xk)

Mainstream GD analysis uses constant (or diminishing) stepsize n
Convergence rate: typically O(1/¢) iterations
Example Applications: Modern optimization, engineering, machine learning

Earlier empirical works hint at potential advantages (e.g., cyclic schedules in NN training)

e 6 6 o o

Huge variety of other gradient-based methods (momentum, Nesterov, adaptive, etc) —
here we can ONLY change the stepsize (non-adaptively)
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Mainstream GD Analysis

o Typical settings: convex M-smooth, or (M, m) strongly convex

e With constant stepsize 7, convergence in O(1/¢) or O(klog(1/e)) iterations (slow rate,
unaccelerated rate)

o E.g., textbooks by Polyak, Nesterov, Boyd, Vandenberghe, Bertsekas, Bubeck, Hazan

@ Issue: Constant schedule converges slowly, even after optimizing 7. For instance, for
M-smooth, m-strongly convex functions, optimal (1-step) stepsize gives

2
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where kK = m/M is the condition number

@ Many other stepsize proposals (e.g., line search, Armijo, Goldstein, Barzilai-Borwein), but
don't provably help for convex optimization
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e With constant stepsize 7, convergence in O(1/¢) or O(klog(1/e)) iterations (slow rate,
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o E.g., textbooks by Polyak, Nesterov, Boyd, Vandenberghe, Bertsekas, Bubeck, Hazan

@ Issue: Constant schedule converges slowly, even after optimizing 7. For instance, for
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where kK = m/M is the condition number

@ Many other stepsize proposals (e.g., line search, Armijo, Goldstein, Barzilai-Borwein), but
don't provably help for convex optimization

Any reason to be hopeful?
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Convex Quadratic Functions (Young 1953)

o Minimize f(x) = 2x Qx where Q is positive definite (m/ < Q < M)
GD @ xp1 = xk — Ik VF(xk) = xk — ke Qxic = (I — ke Q) xk
@ Nice, because it becomes a question about eigenvalues:
eig(l —miQ) =1 — nieig(Q)

@ Stepsize design is a polynomial optimization problem:

i 1-A ’
min max_ ’kHI( k)

N———
Pn()‘)

Find a polynomial p,()) with p,(0) = 1 that is “small" on [m, M].
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Convex Quadratic Functions (Young 1953)

Classic problem, with a classic answer:
(scaled) Chebyshev polynomials.

Young (1953):

@ Optimal gradient stepsizes are the inverse roots of
(scaled) Chebyshev polynomials.

@ Associated convergence rate is O(v/k)

Proves advantage of non-constant stepsizes. But, unclear
whether it extends to other settings!

o Key Point: Non-constant stepsizes (hedging) can
accelerate convergence — at least for quadratics
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Quadratic functions (and polynomials) are very special

(At least) three different viewpoints: |
@ Inverse roots and minimax characterization of ors
Chebyshev polynomials
@ Orthogonal polynomials and three-term recurrence - \ N 7 /
(Heavy Ball, momentum, ...)
e Asymptotic root distribution (arcsine distribution, \/
potential theory, universality) oy . - : - .

Unfortunately, most of these methods and proof techniques do not gracefully extend to the
general (convex non-quadratic) case... :(
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Convex Optimization Challenges

@ Before 2018, it was unknown whether any stepsize schedule leads to speedup over
constant steps for any setting beyond quadratics
o Core difficulties: Many phenomena false beyond quadratics, multistep reasoning necessary

o Additional challenge: How to find optimal stepsizes beyond quadratics

Quadratic Convex
Mainstream ©(x) by constant stepsizes (folklore) ©(k) by constant stepsizes (folklore)
Mod. Algorithm ©(y/k) by Heavy Ball (Polyak’'64) ©(1/k) by Nesterov Acceleration
Hedged Stepsizes | ©(/x) by Chebyshev Stepsizes (Young'53) 7N

Table: Iteration complexity of various approaches for minimizing a x-conditioned convex function. The
dependence on the accuracy ¢ is omitted as it is always log1/e.
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Does Hedging Help for Non-Quadratic Convex Functions?

o Consider two possible setups: Minimize f(x), which is either

e convex and M-smooth
e m-strongly convex and M-smooth

o Algorithmic Opportunity: Similar intuition as in quadratic case. Worst-case functions
may not align, so there is an incentive for hedging

Hopefully easier to understand first: what can we do with two stepsizes?

Should they be the same? If not, do we want to do long/short, or short/long?
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The two-step case (Altschuler 2018)

Consider
x1 = xp — aVf(xp), xp =x1 — VIf(x1),
and define the worst-case convergence rate over a function class F as
R(a, B; F):=  sup e =" X*H
feF, xo#£x* ”XO —X H
The question of optimal stepsizes is therefore the minimax problem min, 5 R(«, 3; F)
Theorem (Altschuler 2018, Thm 8.10)

For (m, M)-convex functions, the optimal two-step schedule and rate are

2 2 S-M

ot = ﬂ* *

TOoM+m-5’ T2m+S—M’

2
where S = /M2 + (M — m)2. Since R* ~ 1 — 2(12\5) < <,\A;,’jr$) ~1— 2, repeating this

periodically gives a constant-factor improvement over the 1-step rate.
V.
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Figure: Stepsize hedging (m = 1/4, M = 1): quadratic (left) vs convex (right).
These are level sets of the convergence rate. Notice the symmetry-breaking, short/long is optimal.
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How much better?

OK, can do better with n = 2. What about n = 3,4,.... How much better?
o Altschuler 2018 First results showing that non-constant steps help beyond quadratics.

e Strongly convex and smooth (optimal 2- and 3-step)
o Separable functions (iid arcsine stepsize, full acceleration)

@ Daccache 2019, Eloi 2022 Optimal stepsizes for n = 2, 3 for smooth case, also different
performance criteria.

o Das Gupta-Van Parys-Ryu 2022 Combined Branch & Bound and PESTO SDP to
numerically search for n-step schedules (up to n = 50)

o Grimmer 2023 Extend and round B&B solutions to rational numbers to rigorously certify
approximate schedules up to n = 127, yields larger constant factor improvements.

o Altschuler-P. 2023 Extends 2-step solution from [A. 2018] via recursion, proving
acceleration and first asymptotic improvement: O(x°78%). For convex, O(e%780%) (first
via black-box reductions, later via simpler limiting case).

o Grimmer-Shu-Wang 2023 Concurrent, obtain rates O(x%%47) and O(e70-%47).
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Aside: the Silver Ratio

Define the number p := 1 + /2 (from the 2-step solution)
We have log, 2 ~ 0.7864 (from our convergence rate)

One of the “metallic means”
@ n=1: Golden ratio (1 + v/5)/2 4
e n=2: Silver ratio 1 + /2

@ n = 3: Bronze ratio ...

Apparently used in Eastern architecture, and Japanese anime characters
(though, there the ratios seem to be V2 1)
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Good Stepsize Hedging through Silver Stepsizes

@ Silver Stepsize Schedule: a natural recursive construction

(but can be made explicit) top
@ Non-monotonic fractal order, convergence rate has a phase ¢
transition o6
@ Proof of multistep descent by enforcing long-range osf
consistency conditions among iterates 0al

@ Non-strongly convex case is the (much simpler) limit of the ,,
(m, M) strongly convex case
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Silver Stepsizes in (m, M) Strongly Convex Setting

0.00

e Fully explicit recursive construction (later) ool LT
@ Schedule is near-periodic of period «'°827 8 oo « st
£ x=200
o Largest stepsizes increase exponentially and later saturate -0 w100
o Convergence rate has phase transition R = =
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Figure: Silver Stepsizes for condition numbers k = 4,16, 64,256 (only first 64 steps shown)

Altschuler-P., “Acceleration by Stepsize Hedging I: Multi-Step Descent and the Silver Stepsize Schedule,” arXiv:2309.07879
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Quadratic Convex
Mainstream ©(x) by constant stepsizes (folklore) ©(k) by constant stepsizes (folklore)
Mod. Algorithm ©(+/k) by Heavy Ball (Polyak’'64) ©(v/k) by Nesterov Acceleration
Hedged Stepsizes | ©(/x) by Chebyshev Stepsizes (Young'53) O(k'°827) by Silver Stepsizes

Table: Iteration complexity for x-conditioned convex functions. Here log,2 ~ 0.7864
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Silver Stepsizes in M-smooth convex setting

Simpler limiting case as k — 0o. Recursive construction:

hant1 = [hn, 14971 hyl, ;
with hy = [v/2]. N
Can be made explicit, easy to implement (e.g., Python) “5’ | | | | | |
[1+rho**((k & -k).bit_length()-2) for k in range(1,64)] °ol 1: Izo Iso : 4ol 5: :so !
10“5 .
Theorem 1
If f is convex and M-smooth, Silver Stepsizes yield (n = 2K —1) ) A
" Nestorov
f(xn) — £ < WHXO —x|? = W”XO — x|1? T

Altschuler-P., “Acceleration by Stepsize Hedging II: Silver Stepsize Schedule for Smooth Convex Optimization,” arXiv:2309.16530
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How to analyze this?

Techniques have long history in dynamical systems and robust control (Lyapunov, p-analysis,
Linear Matrix Inequalities (LMIs), Integral Quadratic Constraints (IQCs), Sum of Squares
(SOS). More recently, PEP/PESTO, neural network certification, etc.)

Essentially:

@ Write valid inequalities for the “uncertain” or “nonlinear” part of the system.
Typically quadratic or polynomial.

@ Use Lagrangian duality (or stronger things, like the Positivstellensatz) to find an identity
that “obviously” certifies the desired conclusion

o Key: Proof system is convex optimization-friendly (e.g., SDP)
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Proof strategy for GD

@ Desired function class F is described through interpolability conditions (Rockafellar,
Taylor, etc.). For instance, for (m, M) strong convexity, all data (x;, gj, f;) satisfies

Qj = 2(M — m)(f; — £;) + 2(Mgj — mgi. x; — xi) — |lgi — gil|* = Mml|x; — x;[[> > 0

e Combine valid quadratic inequalities by nonnegative linear combinations (i.e., Lagrangian
duality)
o E.g., Drori-Teboulle 2014, Lessard-Recht-Packard 2016, Taylor-Hendrickx-Glineur 2016,

Usually works fine for fixed n.
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In our case (at a high level)

Want to certify that for our stepsize choice 7y, the set of equations describing:
@ Interpolability conditions on the data: Q;; > 0 for all pairs 1 <i/,j <n
@ Method definition: gradient descent equations

Xk+1 = Xk — Nk8k
directly imply the desired rate inequality.
For any finite n, this is just a finite collection of linear/quadratic inequalities in (f;, gj, x;). In
particular we can do this by finding nonnegative multipliers \j; such that

1
Z \;jQ;j + (something squared) = ||xo — x||* + F(f* — fn).
’:/- n

since this obviously implies f, — f, < Ry||x0 — x«||?.
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Proof strategies

Caveats (!)

@ To prove asymptotic improvements (not just constant factors), this must be done
“symbolically,” i.e., for all values of n

e Finding stepsizes 7 is not (yet?) a convex problem. Typically, one proposes an ansatz
based on small instances, and attempts to prove it.

In our case, the Silver Stepsizes were motivated by Jason's 2-step solution and numerical work.

We believe they are essentially optimal (work in progress, more soon!)
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Recursive gluing

A recursive certificate that almost works, by “gluing” two smaller certificates

Xo X Xn  Xnyy v s Xgmer X

Then don’t quite match, but can modify things to fix it =«

X1

Write perturbation as sum of two quadratic forms:

Aj= O + =i + A4y » SRR
~~ ~~~ ~~
gluing  rank-one correction  sparse correction ¥av1

Then an induction argument proves the identity for all n

[1]
[1]
[1]
>

Proof verification is fully algorithmic — no need to trust zma A
our math! x A

[1]
[1]
[1]
>
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Things to think about

Finer-grained understanding for restricted function classes
Robustness (cf. Devolder et al. for Nesterov's)
Connections to superacceleration in neural network training?

Rethink offline to online conversions

Beyond GD: Re-investigating algorithms that use greedy analyses
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Takeaways

Why this is interesting: provides a new mechanism for acceleration

Result: Can (partially) accelerate GD simply by non-adaptive stepsize choice!
Intuition: Hedging between misaligned worst-case functions

Analysis: Multi-step descent by enforcing long-range consistency along GD trajectory

Carefully exploits the “rigidity” of the cost at different timesteps

Can we make algorithm analysis AND design fully algorithmic?
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