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Nearest Neighbor Search
• Given: a set P of n points in 

some space X under some 
metric d

• Goal: data structure which, 
given any query q returns p’ÎP,  
where 

   d(p’,q) ≤ minpÎP d(p,q)
• Many applications
• Text retrieval:

– P={doc1, doc2, doc3, ….}
– q = query

q



Example: d=2  
• Space partitioning: Voronoi 

diagram 
– Combinatorial complexity O(n)

• Given q, find the cell q belongs 
to (point location)

• Performance:
– Query time: O(log n)
– Space: O(n)



The case of d>2
• Voronoi diagram has size n⌈d/2⌉

– NNS data structure with nO(d) space, (d+ log n)O(1) 
time [Dobkin-Lipton’78,Meiser’93,Clarkson’88]  

• We can also perform a linear scan: O(dn) 
space, O(dn) time
– Can speedup the scan time by roughly O(n1/d)

• These are pretty much the only known 
general solutions !

• In fact, exact algorithm with n1-β query time for 
some β>0 and poly(n) preprocessing would 
violate certain complexity-theoretic conjecture 
(Strong Exponential Time Hypothesis)



Relaxation: Theory
• Given: a set P of n points in 

some space X under some metric 
d, parameter ε>0

• Goal: data structure which, given 
any query q returns p’ÎP,  where 
   d(p’,q) ≤ (1+ε) minpÎP d(p,q)

q

“(1+ε)-approximate nearest neighbor”



Relaxation: Practice
• Given: a set P of n points in 

some space X under some metric 
d, parameter k

• Goal: data structure which 
returns as many top k nearest 
neighbors as possible
– Recall@k: the fraction of top k 

nearest neighbors returns

q

k=2

Recall@k=0.50



Nearest neighbor algorithms



Landscape in 2017

From: M Aumüller, E Bernhardsson, A Faithfull, ANN-Benchmarks: A 
Benchmarking Tool for Approximate Nearest Neighbor Algorithms, 
SISAP 2017



Landscape in 2024

From: https://ann-benchmarks.com



Graph-based algorithms

• Recent “empirical wave”: NGT , HNSW, 
NSG, DiskANN, SSG, Kgraph, DPG, NSW, 
SPTAG-KDT, EFANNA ….

• Main ideas:
– Preprocessing: create a graph G=(P,E) over 

points P
– Query time: greedy search, i.e., in each step, 

move from p to argminu∈N(p) d(q,p)



Analysis:
Algorithms for doubling metrics

Authors Space Query Time

Krauthgamer, Lee’04 2O(dim) n log Δ 2O(dim) log Δ

Krauthgamer, Lee’04 n2 2O(dim) log2 n

Har-Peled, Mendel’05 2O(dim) n log n 2O(dim)  log n

Beygelzimer, Kakade, Langford’06 n 2O(dim)  log Δ

Cole, Gottlieb;06 n 2O(dim)  log n

Indyk, Xu’23: DiskANN (slow preprocess) 2O(dim) n log Δ 2O(dim) log2 Δ

Indyk, Xu’23: all other algorithms Linear in n 
(empirically)

Constant approximation factor; bounds up to O(.). Notation:
• dim = logarithm of the number of r-balls needed to cover any 2r-ball (doubling 

dimension)
• Δ = ratio of max distance to min distance



Nearest neighbor search - 
usage



Using nearest neighbor search: 
filtering/reranking

• d – proxy metric (less accurate, cheap to compute)
• D – ground-truth metric (more accurate, expensive)

– E.g., for our text retrieval experiments, 2-3 orders of magnitude difference 
between computation times

• Benefits:
– k’ ≪ k, so query time must faster than if k’-NN was done directly on D
– Preprocessing on d, not D. So cheap to construct; also no need to update 

when D changes
• Drawbacks:

– Theory: Suppose that d ≤ D ≤ c d. Then cannot guarantee <c-approximation
– Practice: need to do a linear scan over the output of the first stage

• Can we keep benefits and ameliorate drawbacks ?

q

k-NN with d

q

k’-NN with D

q



Results



Improving over reranking: 
theory

Informal Theorem: Suppose we have a “graph-based” (1+ε)-
approximate algorithm, with space S(n,ε) and query time Q(n,ε).
Then we get (1+ε)-approximation using space S(n,ε/C) and 
query time Q(n,ε/C).

Authors Space Query Time

Beygelzimer, Kakade, Langford n (2/ε)O(dim)  log Δ

DiskANN (slow preprocessing) (2/ε)O(dim) n log Δ (2/ε)O(dim) log2 Δ

n (C/ε)O(dim)  log Δ

(C/ε)O(dim) n log Δ (C/ε)O(dim) log2 Δ



Improving over reranking: 
practice 

• Text retrieval application
• Experimented with DiskANN algorithm on 

MTEB benchmark data sets
• For several data sets, state-of-the-art 

retrieval accuracy using up 4x fewer 
evaluations of expensive D compared to 
reranking



Theory - intuition
Informal Theorem expanded: for graph-based (1+ε)-
approximate algorithms with space S(n,ε) and query time 
Q(n,ε), if we perform preprocessing using d and 
answer queries using D (and modify the algorithms 
slightly) then we get (1+ε)-approximation using space 
S(n,ε/C) and query time Q(n,ε/C).

Main proof idea: 
• Graph-based algorithms rely (explicitly or implicitly) on  

r-nets, i.e., coverings using r-balls
• r-net constructed for d is a Cr-net for D



Text retrieval - setup
• Mostly focused on DiskANN algorithm
• Modify the algo so that it also uses d answering queries
• MTEB benchmark data sets, models from Hugging Face 

leaderboard (below)

D

d
…



Text retrieval - results



Conclusions

• Bi-metric framework for nearest neighbor 
search

• Questions:
– Theory
– Applications
– Connections, e.g., to learning-augmented 

algorithms



Doubling constant

• Consider a metric M=(X,D)
• A doubling constant of M is the 

smallest value C such that any 
ball B(p,2r) can be covered using 
at most C balls B(p1,r)…B(pC,r)
– d=log C is called doubling 

dimension

• We will also use Δ to denote the 
ratio of diameter to closest pair 
distance 


