A Bi-metric Framework for Fast Similarity Search Piotr Indyk (MIT)

Haike Xu Sandeep Silwal MIT MIT→U Wisconsin Nearest Neighbor Search

 \bigcirc

 \bigcirc

 \bigcirc

- Given: a set P of n points in some space X under some metric d
- Goal: data structure which, given any query q returns p'∈P, where

 $d(p',q) \le \min_{p \in P} d(p,q)$

- Many applications
- Text retrieval:

- P={doc1, doc2, doc3,}

-q = query

Example: d=2

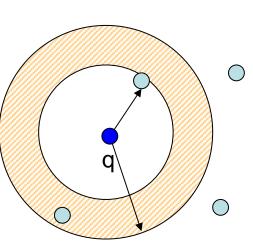
- Space partitioning: Voronoi diagram
 - Combinatorial complexity O(n)
- Given q, find the cell q belongs to (point location)
- Performance:
 - Query time: O(log n)
 - Space: O(n)

The case of d>2

- Voronoi diagram has size n^[d/2]
 - NNS data structure with n^{O(d)} space, (d+ log n)^{O(1)} time [Dobkin-Lipton'78,Meiser'93,Clarkson'88]
- We can also perform a linear scan: O(dn) space, O(dn) time
 - Can speedup the scan time by roughly $O(n^{1/d})$
- These are pretty much the only known
 general solutions !
- In fact, exact algorithm with n^{1-β} query time for some β>0 and poly(n) preprocessing would violate certain complexity-theoretic conjecture (Strong Exponential Time Hypothesis)

Relaxation: Theory

- Given: a set P of n points in some space X under some metric d, parameter ε>0
- Goal: data structure which, given any query q returns $p' \in P$, where $d(p',q) \le (1+\epsilon) \min_{p \in P} d(p,q)$

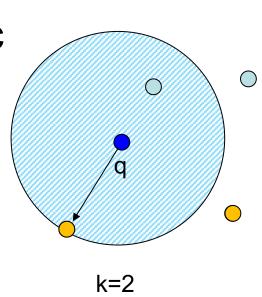


 \bigcirc

"(1+ε)-approximate nearest neighbor"

Relaxation: Practice

- Given: a set P of n points in some space X under some metric d, parameter k
- Goal: data structure which returns as many top k nearest neighbors as possible



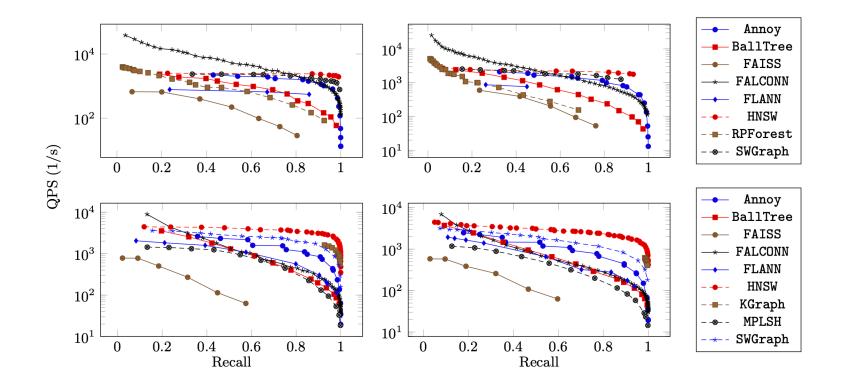
Recall@k=0.50

 \bigcirc

 Recall@k: the fraction of top k nearest neighbors returns

Nearest neighbor algorithms

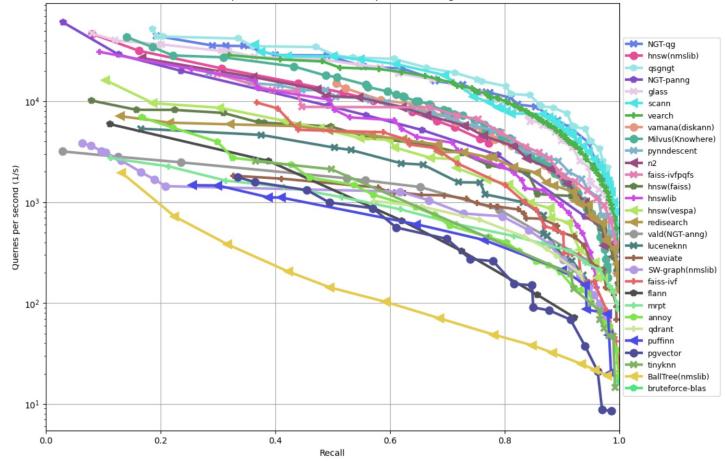
Landscape in 2017



From: M Aumüller, E Bernhardsson, A Faithfull, ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms, SISAP 2017

Landscape in 2024

Recall-Queries per second (1/s) tradeoff - up and to the right is better



From: https://ann-benchmarks.com

Graph-based algorithms

- Recent "empirical wave": NGT, HNSW, NSG, DiskANN, SSG, Kgraph, DPG, NSW, SPTAG-KDT, EFANNA
- Main ideas:
 - Preprocessing: create a graph G=(P,E) over points P
 - Query time: greedy search, i.e., in each step, move from p to argmin_{u∈N(p)} d(q,p)

Analysis: Algorithms for doubling metrics

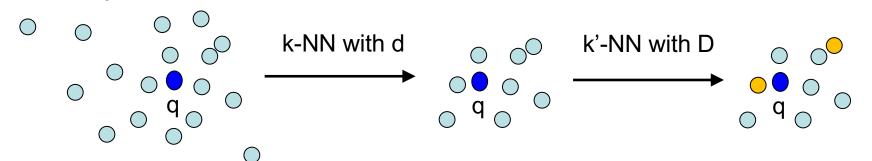
Authors	Space	Query Time
Krauthgamer, Lee'04	$2^{O(dim)} n \log \Delta$	$2^{O(dim)} \log \Delta$
Krauthgamer, Lee'04	n ²	2 ^{O(dim)} log ² n
Har-Peled, Mendel'05	2 ^{O(dim)} n log n	2 ^{O(dim)} log n
Beygelzimer, Kakade, Langford'06	n	$2^{O(dim)} \log \Delta$
Cole, Gottlieb;06	n	2 ^{O(dim)} log n
Indyk, Xu'23: DiskANN (slow preprocess)	$2^{O(dim)} n \log \Delta$	$2^{O(dim)} \log^2 \Delta$
Indyk, Xu'23: all other algorithms		Linear in n (empirically)

Constant approximation factor; bounds up to O(.). Notation:

- dim = logarithm of the number of r-balls needed to cover any 2r-ball (doubling dimension)
- Δ = ratio of max distance to min distance

Nearest neighbor search usage

Using nearest neighbor search: filtering/reranking



- d proxy metric (less accurate, cheap to compute)
- D ground-truth metric (more accurate, expensive)
 - E.g., for our text retrieval experiments, 2-3 orders of magnitude difference between computation times
- Benefits:
 - k' « k, so query time must faster than if k'-NN was done directly on D
 - Preprocessing on d, not D. So cheap to construct; also no need to update when D changes
- Drawbacks:
 - Theory: Suppose that $d \le D \le c d$. Then cannot guarantee <c-approximation
 - Practice: need to do a linear scan over the output of the first stage
- Can we keep benefits and ameliorate drawbacks?

Results

Improving over reranking: theory

Informal Theorem: Suppose we have a "graph-based" $(1+\epsilon)$ -approximate algorithm, with space $S(n,\epsilon)$ and query time $Q(n,\epsilon)$. Then we get $(1+\epsilon)$ -approximation using space $S(n,\epsilon/C)$ and query time $Q(n,\epsilon/C)$.

Authors	Space	Query Time		
Beygelzimer, Kakade, Langford	n	$(2/\epsilon)^{O(dim)} \log \Delta$		
DiskANN (slow preprocessing)	$(2/\epsilon)^{O(dim)} n \log \Delta$	$(2/\epsilon)^{O(dim)} \log^2 \Delta$		
	↓			
	n	$(\mathbf{C}/\epsilon)^{O(\dim)} \log \Delta$		
	$(\mathbf{C}/\epsilon)^{O(dim)} \operatorname{n} \log \Delta$	$(C/\epsilon)^{O(dim)} \log^2 \Delta$		

Improving over reranking: practice

- Text retrieval application
- Experimented with DiskANN algorithm on MTEB benchmark data sets
- For several data sets, state-of-the-art retrieval accuracy using up 4x fewer evaluations of expensive D compared to reranking

Theory - intuition

Informal Theorem expanded: for graph-based $(1+\epsilon)$ approximate algorithms with space $S(n,\epsilon)$ and query time $Q(n,\epsilon)$, if we perform **preprocessing using d** and answer **queries using D** (and modify the algorithms slightly) then we get $(1+\epsilon)$ -approximation using space $S(n,\epsilon/C)$ and query time $Q(n,\epsilon/C)$.

Main proof idea:

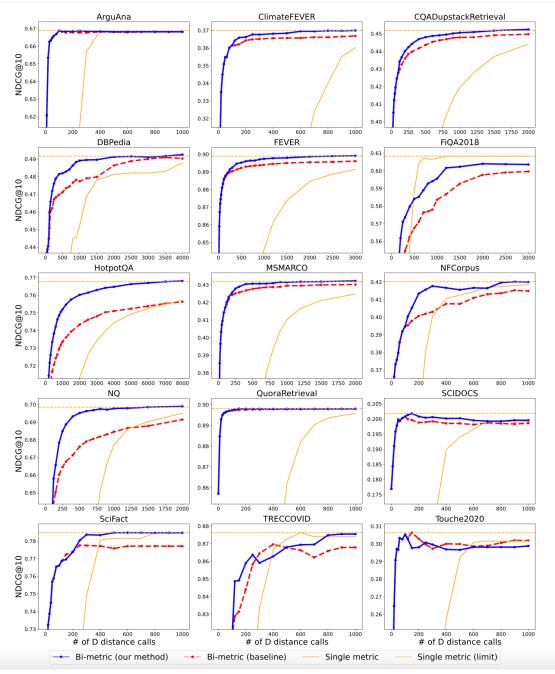
- Graph-based algorithms rely (explicitly or implicitly) on r-nets, i.e., coverings using r-balls
- r-net constructed for d is a Cr-net for D

Text retrieval - setup

- Mostly focused on DiskANN algorithm
- Modify the algo so that it also uses d answering queries
- MTEB benchmark data sets, models from Hugging Face leaderboard (below)

	Model 🔺	Model Size (Million A Parameters)	Memory Usage (GB, fp32)	Average 🔺	ArguAna 🔺	ClimateFEVER 🔺	CQADupstackRetrieval 🔺	DBPedia 🔺	FEVER 🔺	FiQA2018 🔺	HotpotQA
	Ling-Embed-Mistral	7111	26.49	60.19	69.65	39.11	47.27	51.32	92.42	61.2	76.24
	NV-Embed-v1	7851	29.25	59.36	68.2	34.72	50.51	48.29	87.77	63.1	79.92
D	SFR-Embedding-Mistral	7111	26.49	59	67.17	36.41	46.49	49.06	89.35	60.4	77.02
	voyage-large-2-instruct			58.28	64.06	32.65	46.6	46.03	91.47	59.76	70.86
	g <u>te-large-en-v1.5</u>	434	1.62	57.91	72.11	48.36	42.16	46.3	93.81	63.23	68.18
	<u>GritLM-7B</u>	7242	26.98	57.41	63.24	30.91	49.42	46.6	82.74	59.95	79.4
	<u>e5-mistral-7b-instruct</u>	7111	26.49	56.89	61.88	38.35	42.97	48.89	87.84	56.59	75.72
	LLM2Vec-Meta-Llama-3-supervis	7505	27.96	56.63	62.78	34.27	48.25	48.34	90.2	55.33	71.76
	voyage-lite-02-instruct	1220	4.54	56.6	70.28	31.95	46.2	39.79	91.35	52.51	75.51
	<u>gte-Qwen1.5-7B-instruct</u>	7099	26.45	56.24	62.65	44	40.64	48.04	93.35	55.31	72.25
	LLM2Vec-Mistral-supervised	7111	26.49	55.99	57.48	35.19	48.84	49.58	89.4	53.11	74.07
_											
d	<u>bge-micro-v2</u>	17	0.06	42.56	55.31	25.35	35.07	32.25	74.99	25.59	53.91

Text retrieval - results

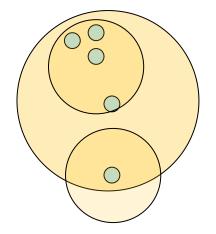


Conclusions

- Bi-metric framework for nearest neighbor search
- Questions:
 - Theory
 - Applications
 - Connections, e.g., to learning-augmented algorithms

Doubling constant

- Consider a metric M=(X,D)
- A doubling constant of M is the smallest value C such that any ball B(p,2r) can be covered using at most C balls B(p₁,r)...B(p_C,r)
 - d=log C is called doubling dimension



 We will also use ∆ to denote the ratio of diameter to closest pair distance