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Motivation — Tree Embeddings

Dimensionality B
* Large-scale data: Potentially O(n)
* J-L embedding: O(log(n))
* Tree embeddings: O(1)

component space
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Problems that leverage distance preservation:
* Traveling Salesperson

* Minimum Spanning Tree

* Earth-Mover Distance J R

- Densest Ball “lle D s .
e .o —

* Minimum Cut oo

* etc.

Johnson-Lindenstrauss Transform

Grid Partitioning




Tree Embeddings
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® We estimate distances:
® dist(d,h) = w(path(d,h)) (tree metric)
® Embedding has «a distortion if:
dist(d,h) < w(path(d,h)) < ax dist (d,h)




Motivation — MPCin O(1) Rounds

MPC: “Massively Parallel Computation”
* Models the algorithmic framework in MapReduce, Hadoop, Spark, etc.

* Round Complexity: number of times machines must communicate

* Most MPC algorithms are at most O(log(n)) rounds
* 0(1) is the gold standard, but most algorithms cannot achieve this

* More on this later...

Tree Embedding in MPC
* Arora’s Grid Partitioning: O(1) MPC rounds, but O(log2(n)) distortion
* Andoni et al.s Ball Partitioning: O(log!->(n)) distortion, but excessive space requirements

Can we combine these two methods to make a fast, low-
memory, low-distortion, MPC tree embedding algorithm?
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Massively Parallel Computation (MPC)
algorithms work as follows:

The problem is distributed Round 3
across small machines. -

In each round, machines execute
local computations.

Between rounds, machines may
send limited-sized messages.
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In the final round, the solution
may be found across machines.




WESSIVELY
Parallel
Computation

Input: a d-dimensional geometric
graph encoded as n, d-length vectors.

Complexities

Rounds: The number of rounds to
complete, r. We often optimize for
this.

Memory: The local space of each
machine. This should be O(n¢) for
any given0<e<1.

: The total space across

all machines and hash tables at
any time. This should be O(nd).

Round 1

Round 2

Round 3

Round r

Output
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Idenifying the connected components of a graph is &
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of settings (see e.g. [2, 31, 27, 56, 60, 52] and the ref-
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are delivered at the beginning of the following round. An
important restiction is that the total size of messages sent
and received by each machine in a round should be O(S).
‘The main objective is 10 minimize the number of rounds that
are exccuted.
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connected components in O(log ) MPC rounds have been

shown [42, 59, 52, 44]. On the negative side.
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Our Results

Theorem: A set of n points in d-dimensional geometric space can be encoded into a tree
embedding with distortion O(logl>(n)) with probability at least 1-1/poly(n) by an MPC
algorithm requiring: O(nd) total space, O(n €) local space, and O(1) rounds (a similar theorem

for JL as well, but proved much easier and with optimal bounds).

Corollary: Approximate minimum spanning tree, densest ball, and Earth-Mover distance can
be solved with probability at least 1-1/poly(n) in MPC within these constraints.
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Minimum spanning tree Densest subgraph on social networks EMD for particle collision modeling




Arora’s Grid Partitioning
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Charikar et al.s Ball Partitioning
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Our Hybrid Partitioning
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Filling a Cell = All 3 methods

Cell Grid Ball Hybrid
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Bucketing Dimension

Say we are given data with dimensions [1, 2, ..., d].
Let r be our number of buckets.
Then, our buckets will be: B ={[1,...,d/r], [d/r+1,...,2d/r], ..., [(r-1)d/r, ..., d]}

Given a point x = (X4, X5, ... Xg) project it into each bucket:
XM = (X, ... Xg/) = the projection of x into B,
X2 = (Xg/r41 - Xaq/r) = the projection of x into B,

X(0'= (X(r1)g/p - Xg) = the projection of x into B,

For each bucket, do a ball partition. If at least two points x, y are in the same ball for all buckets, then
create a “cluster” with these two points (i.e., a node in the tree — we will recurse on only these points).




Bucketing Dimension

Dimensions: x, y, z, let r = 2. Say we bucket x and y together. This is what the “cluster” shapes will

R

X,y plane O O

in 3-d




A Sequential Algorithm

Let the tree root be a “cluster” of all data.

Bucket our dimensions.
For each bucket, run a ball partitioning.

For each maximal set of vertices contained in the same ball for all buckets, create a “cluster” for
that set (and a corresponding node in the tree).

Recurse on each child.




Translating to MPC

Embed the data in O(log(n)) dimensions via MPC Fast Johnson-Lindenstrauss that we provide as
byproduct in this paper

Construct random shifted grids for each run of ball partitioning through the entire algorithm and
send a copy to all machines

* Proving this can be done in the space requirements is a key point of the paper and is why we cannot run
ball partitioning as is
Assign a subset of points to each machine. In each machine:
* Run the hybrid partioning
* For each vertex in the partitioning, construct its path to the root of the tree embedding
* Join these paths to make a tree (a partial embedding)

Take a union of all trees to find the final embedding

Our results are optimized when r = loglog(n).




Summary

Grid Partitioning O(log?(n)) 0(1)
Ball Partitioning O(log!>(n)) 0O(1) Too high
Hybrid Partitioning O(logt5(n)) 0o(1) OK




MPC Orthogonal Vector
Conjecture




Orthogonal Vector Conjecture

e Orthogonal Vector (OV) Problem - Given a set of n binary vectors, is there a pair of vectors a, b such
that a-b = 0.
e OV Conjecture - No truly subquadratic time algorithm exists for the Orthogonal Vector problem
unless the Strong Exponential Time Hypothesis is false.
o  Well-studied conjecture in fine-grained complexity
o  Provides nearly-quadratic lower bounds for many problems such as Longest Common Substring, Regular
Expression Matching, Edit Distance, Largest Common Subtree, Approximating Graph Diameter, and more.




MPC Lower Bounds

Few lower bounds in MPC:

e Recently, Ghaffari, Kuhn, and Uitto (FOCS 2019) showed hardness conditioned on 1 versus 2-Cycle
problem for Maximum Matching, Vertex Cover, Maximal Independent Set, and Coloring problems in
MPC.

e Roughgarden, Vassilvitskii, and Wang (SPAA 2016) showed that proving a super-logarithmic
communication round lower bound would imply P # NC'

It would still be useful to build a class of problems with conditional super-logarithmic communication
rounds.




MPC Orthogonal Vector Conjecture

MPC Orthogonal Vector Conjecture - For every constant € € (0, 1), there is no MPC algorithm that solves
OV using n& 1) communication rounds, @(n&) processors, and n*°) total memory.

Intuition:

e Each processor has n€ll) |ocal memory and can compute the dot product of nZ2e*o(1) pajrs of

vectors in a single communication round.
e Adirect solution requires checking O(n?) pairs of vectors, and to compute the dot product

necessitates the vectors be co-located on the same processor
e Even if the vectors are constant-length, this does not improve the round complexity of any algorithm

that must check O(n?) pairs.




MPC OV Conjecture Implications

For any problem X, if there exists a reduction f from OV to X such that:

1. Each vector v has gadget size |f(v)| = O(1).
2. Each gadget f(v) can be computed locally in MPC.

then assuming the MPC OV Conjecture, no MPC algorithm can solve X with n&% communication rounds
for € € (0, 1), O(n®) processors, and n1*°(1) total memory.

Most of the previously mentioned problems, e.g., Longest Common Substring, Edit Distance, Approximate
Graph Diameter, etc., can be shown to support the above type of reductions.




Example: 1.5-Approximate Graph Diameter

e Each processor P; is responsible for constructing the vector gadgets for S = O(n'*) vectors a; 4, a;, ..., s
e After distributing the vectors to processors, no additional communication rounds necessary

Al Qa0 e Qg wn Qppi-€, v, Qe pi-e B bl,l' ey bi,l' "'bi,nl'e' e s bne'nl—e

. Example of reduction from O.V. to Graph Diameter problem in the MPC medel.







