
Mohammad Hajiaghayi
Wiki & Linkedin: @Mohammad Hajiaghayi
Twitter:@MTHajiaghayi
YouTube:@hajiaghayi [PLEASE SUBSCRIBE]
Instagram:@mhajiaghayi

Massively Parallel Tree Embeddings for High
Dimensional Spaces and Strong OV Conjecture

AmirMohsen Ahanchi, Alexandr Andoni, MohammadTaghi Hajiaghayi, Marina Knittel, and Peilin
Zhong (SPAA’23)

Debarati Das, Jacob Gilbert, MohammadTaghi Hajiaghayi, Tomasz Kociumaka, Barna Saha (SPAA’24)

Motivation – Tree Embeddings
Dimensionality
• Large-scale data: Potentially O(n)
• J-L embedding: O(log(n))
• Tree embeddings: O(1)

Problems that leverage distance preservation:
• Traveling Salesperson
• Minimum Spanning Tree
• Earth-Mover Distance
• Densest Ball
• Minimum Cut
• etc.

Principal Component Analysis

Johnson-Lindenstrauss Transform

Grid Partitioning

Tree Embeddings

We estimate distances:

dist(d,h) ≈ w(path(d,h)) (tree metric)

Embedding has 𝛼 distortion if:

 dist(d,h) ≤ w(path(d,h)) ≤ α× dist (d,h)

Motivation – MPC in O(1) Rounds
MPC: “Massively Parallel Computation”
• Models the algorithmic framework in MapReduce, Hadoop, Spark, etc.
• Round Complexity: number of times machines must communicate
• Most MPC algorithms are at most O(log(n)) rounds
• O(1) is the gold standard, but most algorithms cannot achieve this

• More on this later…

Tree Embedding in MPC
• Arora’s Grid Partitioning: O(1) MPC rounds, but O(log2(n)) distortion
• Andoni et al.’s Ball Partitioning: O(log1.5(n)) distortion, but excessive space requirements

Can we combine these two methods to make a fast, low-
memory, low-distortion, MPC tree embedding algorithm?

Massively
Parallel
Computation
Massively Parallel Computation (MPC)
algorithms work as follows:

1. The problem is distributed
across small machines.

2. In each round, machines execute
local computations.

3. Between rounds, machines may
send limited-sized messages.

4. Repeat.

5. In the final round, the solution
may be found across machines.

Massively
Parallel
Computation
Input: a d-dimensional geometric
graph encoded as n, d-length vectors.

Complexities

• Rounds: The number of rounds to
complete, r. We often optimize for
this.

• Memory: The local space of each
machine. This should be O(nε) for
any given 0 < ε < 1.

• Total space: The total space across
all machines and hash tables at
any time. This should be O(nd).

Massively Parallel Computation

8

8

Our Results
Theorem: A set of n points in d-dimensional geometric space can be encoded into a tree
embedding with distortion O(log1.5(n)) with probability at least 1-1/poly(n) by an MPC
algorithm requiring: Õ(nd) total space, O(n ε) local space, and O(1) rounds (a similar theorem
for JL as well, but proved much easier and with optimal bounds).

Corollary: Approximate minimum spanning tree, densest ball, and Earth-Mover distance can
be solved with probability at least 1-1/poly(n) in MPC within these constraints.

EMD for particle collision modelingDensest subgraph on social networksMinimum spanning tree

Arora’s Grid Partitioning

Charikar et al.’s Ball Partitioning

Our Hybrid Partitioning

Filling a Cell – All 3 methods
Cell Grid Ball Hybrid

r=1 r=2

d=2

d=3

Bucketing Dimension
Say we are given data with dimensions [1, 2, …, d].
Let r be our number of buckets.
Then, our buckets will be: B = {[1,…,d/r], [d/r+1,…,2d/r], …, [(r-1)d/r, …, d]}

Given a point x = (x1, x2, … xd) project it into each bucket:
x(1) = (x1, … xd/r) = the projection of x into B1

x(2) = (xd/r+1, … x2d/r) = the projection of x into B2

…
x(r) = (x(r-1)d/r, … xd) = the projection of x into Br

For each bucket, do a ball partition. If at least two points x, y are in the same ball for all buckets, then
create a “cluster” with these two points (i.e., a node in the tree – we will recurse on only these points).

Bucketing Dimension
Dimensions: x, y, z, let r = 2. Say we bucket x and y together. This is what the “cluster” shapes will
look like.

z axis

x,y plane

in 3-d

A Sequential Algorithm
Let the tree root be a “cluster” of all data.

Bucket our dimensions.

For each bucket, run a ball partitioning.

For each maximal set of vertices contained in the same ball for all buckets, create a “cluster” for
that set (and a corresponding node in the tree).

Recurse on each child.

Translating to MPC
Embed the data in O(log(n)) dimensions via MPC Fast Johnson-Lindenstrauss that we provide as
byproduct in this paper

Construct random shifted grids for each run of ball partitioning through the entire algorithm and
send a copy to all machines
• Proving this can be done in the space requirements is a key point of the paper and is why we cannot run

ball partitioning as is

Assign a subset of points to each machine. In each machine:
• Run the hybrid partioning
• For each vertex in the partitioning, construct its path to the root of the tree embedding
• Join these paths to make a tree (a partial embedding)

Take a union of all trees to find the final embedding

Our results are optimized when r = loglog(n).

Summary

Algorithm Distortion Rounds Space

Grid Partitioning O(log2(n)) O(1) OK

Ball Partitioning O(log1.5(n)) O(1) Too high

Hybrid Partitioning O(log1.5(n)) O(1) OK

MPC Orthogonal Vector
Conjecture

Orthogonal Vector Conjecture

● Orthogonal Vector (OV) Problem - Given a set of n binary vectors, is there a pair of vectors a, b such
that a·b = 0.

● OV Conjecture - No truly subquadratic time algorithm exists for the Orthogonal Vector problem
unless the Strong Exponential Time Hypothesis is false.

○ Well-studied conjecture in fine-grained complexity
○ Provides nearly-quadratic lower bounds for many problems such as Longest Common Substring, Regular

Expression Matching, Edit Distance, Largest Common Subtree, Approximating Graph Diameter, and more.

MPC Lower Bounds

Few lower bounds in MPC:

● Recently, Ghaffari, Kuhn, and Uitto (FOCS 2019) showed hardness conditioned on 1 versus 2-Cycle
problem for Maximum Matching, Vertex Cover, Maximal Independent Set, and Coloring problems in
MPC.

● Roughgarden, Vassilvitskii, and Wang (SPAA 2016) showed that proving a super-logarithmic
communication round lower bound would imply P ≠ NC¹

It would still be useful to build a class of problems with conditional super-logarithmic communication
rounds.

MPC Orthogonal Vector Conjecture

MPC Orthogonal Vector Conjecture - For every constant ε ∈ (0, 1), there is no MPC algorithm that solves
OV using nε−Ω(1) communication rounds, Θ(nε) processors, and n1+o(1) total memory.

Intuition:

● Each processor has n1-ε+o(1) local memory and can compute the dot product of n2-2ε+o(1) pairs of
vectors in a single communication round.

● A direct solution requires checking O(n2) pairs of vectors, and to compute the dot product
necessitates the vectors be co-located on the same processor

● Even if the vectors are constant-length, this does not improve the round complexity of any algorithm
that must check O(n2) pairs.

MPC OV Conjecture Implications

For any problem X, if there exists a reduction f from OV to X such that:

1. Each vector v has gadget size |f(v)| = O(1).
2. Each gadget f(v) can be computed locally in MPC.

then assuming the MPC OV Conjecture, no MPC algorithm can solve X with nε−Ω(1) communication rounds
for ε ∈ (0, 1), O(nε) processors, and n1+o(1) total memory.

Most of the previously mentioned problems, e.g., Longest Common Substring, Edit Distance, Approximate
Graph Diameter, etc., can be shown to support the above type of reductions.

Example: 1.5-Approximate Graph Diameter

● Each processor Pi is responsible for constructing the vector gadgets for S = O(n1-ε) vectors ai,1, ai,2, … , ai,S
● After distributing the vectors to processors, no additional communication rounds necessary

