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Introduction



Generative modeling

We have a dataset DN := {X1, . . . , XN}, where Xi ∈ Rdx .

Figure 1: Samples from the ImageNet dataset.

Modeling assumption

(X1, . . . , XN ) are samples from some unknown distribution πdata
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Generative modeling

1 Approximate πdata with a parametric model.

Figure 2: data distribution.
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Bayesian inverse problems

2 Sample reconstructions from the posterior distribution.

Figure 3: Reconstruction problems. Figure adapted from Lugmayr et al.

(2022).
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Generative modeling

1 Approximate πdata with a parametric model pθ.

1 Choose a suitable parametric form for pθ.

2 Train pθ to approximate π using the samples (X1, . . . , XN ) ∼ π.

L(θ) =
N∑
i=1

− log pθ(Xi) .

⇝ Minimize L(θ) → find optimal parameter θ∗.

Ackley et al. (1985); Kingma and Welling (2013); Goodfellow et al. (2014); Rezende

and Mohamed (2015); Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al.

(2021b)
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Posterior sampling

2 Perform controlled generation using pθ∗ .

⇝ Target distribution: weight pθ∗ with a function x 7→ g(x)

ϕ(dx) =
g(x)pθ∗(dx)∫
g(z)pθ∗(dz)

,

⇝ Posterior sampling: g(x) = p(y|x).

⇝ Reinforcement learning: g is a reward function.
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Denoising diffusion models



Introduction

A denoising diffusion probabilistic model (DDPM) makes use of two

Markov chains:

1 a forward chain (process) that perturbs data to noise,

2 a reverse chain (process) that converts noise back to data.

The forward chain is typically hand-designed with the goal to

transform the data distribution πdata into a (simple) reference

distribution πref (e.g., standard Gaussian)

The backward chain reverses the forward chain by learning transition

kernels.

New data points are generated by first sampling a random vector

from the reference distribution, followed by ancestral sampling

through the backward Markov chain.
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Forward process

Given a data distribution x0 ∼ πdata(dx0) = q0(dx0), the forward

Markov chain generates a sequence of random variables x1, x2 . . . xT

with transition kernel qt|t−1 (dxt | xt−1).

The joint distribution of x1, x2 . . . xT conditioned on x0, denoted as

q0:T (d(x1, . . . , xT ) | x0), may be written as

q0:T (d(x1, . . . , xT ) | x0) =

T∏
t=1

qt|t−1 (dxt | xt−1) .

In DDPMs, we handcraft the transition kernel qt|t−1 (dxt | xt−1) to

incrementally transform the data distribution q0 (dx0) into a

tractable reference distribution.

Typical design: Gaussian perturbation

qt|t−1 (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
,

where βt ∈ (0, 1) is a hyperparameter chosen ahead of model

training.
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Forward process

Gaussian transition kernel allows us to obtain the analytical form of

qt|0 (xt | x0) for all t ∈ {0, 1, · · · , T}. Setting αt := 1− βt and

ᾱt :=
∏t

s=0 αs, we have

qt|0 (xt | x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

)
.

Given x0, we can easily obtain a sample of xt by sampling a

Gaussian vector ϵt ∼ N (0, I) and applying the transformation

xt =
√
ᾱtx0 +

√
1− ᾱtϵt.

When ᾱT ≈ 0, xT is almost Gaussian in distribution,

qT (xT ) :=

∫
qT |0 (xT | x0) q0 (x0) dx0 ≈ N (xT ;0, I) .
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Backward process

For generating new data samples, DDPMs start by sampling the

reference distribution and then gradually remove noise by running a

learnable Markov chain backward in time.

The reverse Markov chain is parameterized by a reference

distribution πref (xT ) = N (xT ;0, I) and a learnable transition kernel

pθt−1|t (xt−1 | xt) = N
(
xt−1;µ

θ
t (xt) ,Σ

θ
t (xt)

)
where θ denotes model parameters, and the mean µθ

t (xt) and

variance Σθ
t (xt) are parameterized by deep neural networks.

Data generation

Sample xT ∼ πref (·),

iteratively sample xt−1 ∼ pθt−1|t (· | xt) until t = 1.

10 / 63



Diffusion model principles

Figure 4: Diffusion models smoothly perturb data by adding noise, then

reverse this process to generate new data from noise.
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Variational Inference

Objective: Adjust the parameter θ so that the joint distribution of

the reverse Markov chain

pθ0:T (x0, x1, · · · , xT ) = pref(xT )

T∏
t=1

pθt−1|t(xt−1 | xt)

matches

q0:T (x0, x1, · · · , xT ) := q0 (x0)

T∏
t=1

qt|t−1 (xt | xt−1) .

Training is performed by maximizing a variational bound:

Eq0

[
− log pθ (x0)

]
≤ Eq0:T

[
− log

pθ0:T (x0:T )

q1:T |0 (x1:T | x0)

]

= Eq0:T

− log pT (xT )−
∑
t≥1

log
pθt−1|t (xt−1 | xt)

qt|t−1 (xt|xt−1)

 =: Lθ
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Variational inference with variance reduction

Lθ might be rewritten using the backward representation of the

forward noising process

q1:T |0(x1:T |x0) =

T∏
t=1

qt|t−1(xt|xt−1)

= qT |0(xT |x0)

T∏
t=2

qt−1|t(xt−1|xt, x0)

With this backward decomposition, Lθ writes

Lθ = Eq0:T

[
− log

pT (xT )

qT |0 (xT | x0)
−

T∑
t=2

log
pθt−1|t (xt−1 | xt)

qt−1|t,0 (xt−1 | xt, x0)

− log pθ0|1 (x0 | x1)
]

= Eq0:T

[
DKL

(
qT |0 (· | x0) ∥pT (·)

)
+

T∑
t=2

DKL

(
qt−1|t,0 (· | xt, x0) ∥pθt−1|t (· | xt)

)
− log pθ0|1 (x0 | x1)

]
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Variational inference with variance reduction

forward posteriors are tractable when conditioned on x0 :

qt−1|t,0 (xt−1 | xt, x0) = N
(
xt−1; µ̃t (xt, x0) , β̃tI

)
where µ̃t (xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt

and β̃t :=
1− ᾱt−1

1− ᾱt
βt

KL divergences are comparisons between Gaussian distributions with

closed form expressions: taking Σθ
t (xt) = β̃tI,

DKL

(
qt−1|t,0 (· | xt, x0) ∥pθt−1|t (· | xt)

)
=

1

2β̃t

∥µ̃t(xt, x0)−µθ
t (xt)∥2 .
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Variational inference with variance reduction

Setting

µθ
t (xt) = µ̃t(xt, x̂

θ
0|t(xt)),

we get

DKL

(
qt−1|t,0 (· | xt, x0) ∥pθt−1|t (· | xt)

)
= wt∥x0 − x̂θ

0|t(xt)∥2 .

with wt = ᾱt−1βt/(1− ᾱt−1)(1− ᾱt).

Hence, criterion Lθ rewrites

Lθ =

T∑
t=2

wtEq0⊗N (0,I)[∥x0 − x̂θ
0|t(
√
ᾱtx0 +

√
1− ᾱtϵ)∥2]

which amount to compute x̂θ
0|t(xt) as a predictor of the initial state

x0 from the current state xt.

This criterion is the denoising score matching.
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Noise prediction

Using that xt =
√
ᾱtx0 +

√
1− ᾱtϵt, we have

x0 =
1√
ᾱt

(xt −
√
1− ᾱtϵt)

Choosing x̂θ
0|t(xt) = (1/

√
ᾱt)(xt −

√
1− ᾱtϵ̂

θ
0|t(xt)), the criterion

Lθ may be equivalently expressed as

Lθ =

T∑
t=2

w̃tEq0⊗N (0,I)[∥ϵ− ϵ̂θ0|t(
√
ᾱtx0 +

√
1− ᾱtϵ)∥2]

where

w̃t =
βt

αt(1− ᾱt−1)
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A continuous-time perspective



Ornstein-Uhlenbeck Noising process

Consider a diffusion process {Xt}Tt=0 that starts from the data

distribution q0(dx) ≡ πdata (dx) at time t = 0. The notation qt(dx)

refers to the marginal distribution of the diffusion at time 0 ≤ t ≤ T .

Assume furthermore that at time t = T , the marginal distribution is

(very close to) a reference distribution qT (dx) = πref (dx) that is

straightforward to sample from, e.g. N (0, I).

This diffusion process is the noising process. It is often chosen as an

Ornstein-Uhlenbeck (OU) diffusion,

dXt = −
1

2
Xtdt+ dWt
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OU noising process

OU diffusion is reversible w.r.t. πref = N (0, I): the conditional

distribution of Xt+s | Xt = xt is N (αsxt, σ
2
sI), with

αs =
√

1− σ2
s σ2

s = 1− e−s

Denote

F (s, x, y) ∝ exp

{
− (y − αsx)

2

2σ2
s

}
.

the forward transition from x to y in ” s ” amount of time.
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Reverse diffusion I (informal)

the DDPM strategy consists in sampling from the Gaussian

reference measure πref at time t = T and simulate the OU process

backward in time.

In other words, one would like to simulate from the reverse process
←−
X t defined as

←−
X s = XT−s

The reverse process is distributed as
←−
X 0 ∼ πref at time t = 0 and,

crucially, we have that
←−
XT ∼ πdata .

The reverse diffusion follows the dynamics (Hausmann, Pardoux,

1986; Millet, Nualart, Sanz, 1989)

d
←−
X t = +

1

2

←−
X tdt+∇ log qT−t

(←−
X t

)
dt+ dBt

where B is another Wiener process [the notation B emphasizes that

there is no link between this Wiener process and the one used to

simulate the forward process].
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Reverse diffusion II (informal)

To simulate the reverse diffusion, one needs to be able to estimate

the score ∇ log qT−t(x).

In practice, the score is unknown and need to be approximated

sθt (x) ≈ ∇x log qt(x)

which is often parameterized by a neural network.

Since

log qt(x) = log

∫
F (t, x0, x)πdata (dx0)

the analytical expression of F (t, x0, x) gives that (Tweedie formula)

∇x log qt(x) = −
x− αtx̂0(x, t)

σ2
t

where x̂0(x, t) = E [X0|Xt = x ] is a denoising estimate of x0 given

a noisy estimate Xt = x at time t
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Estimation of the score

To estimate the score, one only needs to train a denoising function

x̂θ
0|t(x).

It is a simple regression problem: take pairs (X0, Xt) that can be

generated as

X0 ∼ πdata and Xt = αtX0 + σtZt

with Zt ∼ N (0, I) and minimize the Mean Squared Error (MSE)

loss, i.e.

Eq0,t

[∥∥∥X0 − x̂θ
0|t(Xt)

∥∥∥2]
with stochastic gradient descent or any other stochastic optimization

procedure.

The score is then defined as

sθt (x) = −
x− αtx̂

θ
t (x)

σ2
t
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Time reversal formula for a diffusion process

General time reversal formulas for diffusion processes are well known

since the 80 ’s. Consider a diffusion process Y in Rn satisfying

dYt = bt (Yt) dt+ σt (Yt) dBt, 0 ≤ t ≤ T,

with B a Brownian motion, b a drift vector field and σ a matrix field

associated to the diffusion field a := σσ⊤

Assuming that the law of Yt is absolutely continuous at each time t,

under appropriate assumptions, the time-reversed process Y ∗ is again a

diffusion process with diffusion matrix field a∗t = aT−t and drift field

b∗t (y) = −bT−t(y) +∇ · (µT−taT−t) (y)/µT−t(y),

where µt is the density of the law of Yt with respect to Lebesgue measure.

This is not a straightforward result because a reversed semimartingale

might not be a semimartingale !.
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Time reversal formula for a diffusion process

For the identity

b∗t (y) = −bT−t(y) +∇ · (µT−taT−t) (y)/µT−t(y),

to hold, it is assumed in that b is locally Lipschitz and that either a is

bounded away from zero or that the derivative ∇a in the sense of

distribution is controlled locally.

Haussmann and Pardoux take a PDE approach; Millet, Nualart and Sanz

rely on stochastic calculus of variations.

The existence of an absolutely continuous density follows from a

Hörmander type condition (PDE formulation in Haussman et al. and

consequence of Malliavin calculus in Millet et al.).
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Time reversal formula for a diffusion process

Föllmer’s approach significantly departs from these strategies. Under the

simplifying hypothesis that a is the identity matrix, the law P of Y has a

finite entropy

H(P | R) <∞

with respect to the law R of a Brownian motion with some given initial

probability distribution.

In particular, the drift field b of P satisfies
∫
[0,T ]×Rn |bt(y)|2 µt(y)dtdy <

∞ and might be singular, rather than locally Lipschitz.

As a consequence of this finite entropy assumption, Föllmer proves the

time reversal formula

b∗t (y) = −bT−t(y) +∇ logµT−t(y)

(recall a = Id) where the derivative is in the sense of distributions,

without invoking any already known result about the regularity of µ.
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Summary

Figure 5: From Dockhorn et al. (2022)
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Feyman-Kac representation



Context

Bayesian linear inverse problem:

Y = AX + σyZ, where Z ∼ N (0dx
, Idx

), X ∼ p0, σy ≥ 0 .

Objective: Sample the distribution of X given a realisation y of Y .

Posterior

samples

Sample from p0

AX+σyZ−−−−−−→

Observation y
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Feynman-Kac representation

We focus on the specific case where the prior p0 is the marginal w.r.t. x0

of Denoising Diffusion Model. The posterior is

py0(dx0) =
1

Zy

∫
gy0 (x0)

n−1∏
k=0

pk|k+1(dxk|xk+1) pn(dxn) .

The posterior can be interpreted as the marginal of a (time-reversed)

Feynman–Kac (FK) model with non-trivial potential only at k = 0 !

In this work, we twist, without modifying the law of the FK model,

the backward transitions pk|k+1 by potentials depending on the

observation y; see e.g. for a similar idea for rare event simulation

(see, e.g., Cérou et al., 2012).
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”Forward” smoothing decomposition

Define, for all k ∈ J0, nK, the backward functions

βy
0|k(xk) :=

∫
gy0 (x0) p0|k(dx0|xk)

The backward functions satisfy the recursion:

βy
0|k+1(xk+1) =

∫
βy
0|k(xk) pk|k+1(dxk|xk+1) .

Define the forward smoothing kernels (FSK) for k ∈ J0, n− 1K

pyk|k+1(dxk|xk+1) :=
βy
0|k(xk)

βy
0|k+1(xk+1)

pk|k+1(dxk|xk+1) ,

(= Law(Xk | Y = y,Xk+1 = xk+1)) .
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“Forward” smoothing decomposition

The posterior distribution can be written in terms of forward smoothing

kernels

py0(dx0) =

∫
pyn(dxn)

n−1∏
k=0

pyk|k+1(dxk|xk+1) .

where

pyn(dxn) =
βy
0|n(xn)pn(dxn)

Zy

Most of the recent works to sample from py0 use the forward

smoothing decomposition with different approximation of the

intractable forward smoothing kernels. Chung et al. (2023); Song

et al. (2023); Zhang et al. (2023); Boys et al. (2023); Trippe et al.

(2023); Wu et al. (2023).
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DDPM approximation

The DDPM is based on the assumption the forward smoothing

decomposition is a good approximation the time reversal of the forward

Markov chain initialized at py0, i.e.

py0(dx0)

n∏
k=1

qk|k−1(dxk|xk−1) ≈ pyn(dxn)

n−1∏
k=0

pyk|k+1(dxk|xk+1) ,

which suggests the following approximation

pyk|k+1(dxk|xk+1) ≈
∫

qk|0,k+1(dxk|x0, xk+1)p
y
0|k+1(dx0|xk+1)

where

py0|k+1(dx0|xk+1) ∝ py0(dx0)qk+1|0(xk+1|x0)
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DDPM approximation

(Ho et al., 2020; Song et al., 2021a) suggested to use the DDPM

approximation of the backward kernel is :

pyk|k+1(dxk|xk+1) = qk|0,k+1(dxk|E
[
X0|Xk+1 = xk+1, Y = y], xk+1)

where

E[X0|Xk+1, Y = y] :=

∫
x0 p

y
0|k+1(dx0|Xk+1) .
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Conditional score

By Tweedie’s formula,

E
[
X0|Xk, Y = y] =

Xk + (1− αk)∇xk
log pyk(Xk)√

αk
,

where

pyk(xk) :=

∫
py0(dx0)qk|0(xk|x0)

∝
∫

gy0 (x0)p0(dx0)qk|0(xk|x0)

∝
∫

gy0 (x0)p0|k(dx0|xk) pk(xk) .

Hence,

∇xk
log pyk(xk) = ∇xk

log βy
0|k(xk) +∇xk

log pk(xk) .
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Diffusion posterior sampling I

∇xk
log pyk(xk) = ∇xk

log βy
0|k(xk) +∇xk

log pk(xk) ,

A pre-trained score network (for ∇xk
log pk(xk)) is available.

But the gradient of the log backward function is intractable in

practice.

Using the pre-trained approximation x̂0|k(Xk) of E[X0|Xk], Chung et al.

(2023) proposed the following approximation,

∇xk
log βy

0|k(xk) ≈ ∇xk
log gy0 (x̂0|k(xk)) .

They then sample approximately from the FSK in the following way;

given Xy
k

First sample Xk−1 ∼ pk−1|k(·|X
y
k )

Then set Xy
k−1 = Xk−1 + γk∇xk

log gy0 (x̂0|k(X
y
k ))

γk is in practice a highly sensitive parameter, crucial for good

performance. 33 / 63



Diffusion posterior sampling II

The DPS approximation by Chung et al. (2023) boils down to

assuming that p0|k(dx0|xk) ≈ δx̂
0|k(xk)(dx0).

This is a very crude approximation that becomes accurate only as

k → 0.

Song et al. (2023) consider the sample sampling scheme but propose

instead the following Gaussian approximation

p0|k(dx0|xk) ≈ N (dx0; x̂0|k(xk), r
2
k Idx

), r2k =
σ2
k

1 + σ2
k

,

in which case, we obtain the following approximation

βy
0|k(xk) ≈ N (y;Ax̂0|k(xk), r

2
kAA⊺ + σ2

y Idy ) .

The Gaussian approximation above becomes exact in the case where

p0 = N (0dx
, Idx

) and variance exploding is used.

Still, this is not a realistic approximation in the more general case.
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Tweedie Moment Projected diffusion

Boys et al. (2023) instead consider a Gaussian approximation p̂0|k(·|xk)

of p0|k(·|xk):

p̂0|k(·|xk) := argmin
µ,Σ

KL(p0|k(·|xk) ∥ N (µ,Σ)) .

and

p̂0|k(·|xk) = N
(
E[X0|Xk = xk],Cov(X0|Xk = xk)

)
,

where the expectation and covariance are under p0|k(·|xk). Under the

same assumption as previously (backward=forward), it can be shown that

Cov(X0|Xk) =
1− αk√

αk
∇xk

E[X0|Xk]

which may be approximated by plugging in x̂0|k(Xk) to approximate

∇xk
E[X0|Xk].

The resulting covariance approximation is not symmetric nor positive

definite.

Extremely expensive to compute. In practice further crude

approximations are introduced.
35 / 63



Monte Carlo guided diffusion



General Feynman–Kac model

Introduce intermediate positive potentials (gyk)
n
k=0, each being a function

on Rdx , and write

py0(dx0) =
1

Zy

∫
gyn(xn) pn(dxn)

×
n−1∏
k=0

gyk(xk)

gyk+1(xk+1)
pk|k+1(dxk|xk+1) .

Because the gyn(xn)
∏n−1

k=0
gy
k(xk)

gy
k+1(xk+1)

= gy0 (x0), the FK is not

modified - the potentials are used to render the sampling easier.

This allows the posterior of interest to be expressed as the time-zero

marginal of a Feynman-Kac model with

initial law pn,

Markov transition kernels (pk|k+1)
n−1
k=0

Potentials gyn and (xk, xk+1) 7→ gyk(xk)/g
y
k+1(xk+1).
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Posterior sampling proposal

Alternatively, the previous decomposition defines a sequence of

distributions

pyk(dxk) ∝ gyk(xk)pk(dxk) , k ∈ J0, nK ,

where the posterior of interest is the terminal distribution at k = 0.

If we have a particle approximation of pyk+1 then we can evolve it

into a particle approximation of pyk ⇝ we recursively build an

empirical approximation of py0.

The choice of potentials {gyk}k∈J0,nK is crucial; we need to ensure

that pyk is close enough to pyk+1 so that we can bridge the

intermediate distributions efficiently.
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Posterior sampling proposal: recursion

Consider the following particle approximation of pyk+1

pN,y
k+1 =

1

N

N∑
i=1

δξik+1
,

Recall that pk(dxk) =
∫
pk|k+1(dxk|xk+1)pk+1(dxk+1),

pyk(dxk) =

∫ gy
k(xk)

gy
k+1(xk+1)

pk|k+1(dxk|xk+1)p
y
k+1(dxk+1)∫ gy

k(zk)

gy
k+1(zk+1)

pk|k+1(dzk|zk+1)p
y
k+1(dzk+1)

,

and hence

pyk(dxk) ∝
∫ ∫

gyk(zk)pk(dzk|xk+1)

gyk+1(xk+1)︸ ︷︷ ︸
:=ω̃k(xk+1)

pyk(dxk|xk+1)p
y
k+1(dxk+1) ,

where pyk(dxk|xk+1) ∝ gyk(xk)pk|k+1(dxk|xk+1) → available in closed

form if we use a Gaussian potential with mean linear in xk.
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form if we use a Gaussian potential with mean linear in xk.
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Posterior sampling proposal: SMC approximation

pyk(dxk) =

∫
pyk(dxk|xk+1)

ω̃k(xk+1)p
y
k+1(dxk+1)∫

ω̃k(zt+1)p
y
k+1(dzk+1)

,

Assume pN,y
k = 1

N

∑N
i=1 δξik+1

is a particle approximation of pN,y
k+1.

⇝ Weight:

pN,y
k (·) ≈

N∑
i=1

ω̃k(ξ
i
k+1)∑N

j=1 ω̃k(ξ
j
k+1)

pyk(·|ξ
i
k+1) .

⇝ Resample: Draw A1:N
k+1

iid∼ Categorical({ωj
k}Nj=1) where ωj

k ∝ ω̃t(ξ
j
k+1).

⇝ Mutate: Sample ξik ∼ pyk(·|ξ
Ai

k+1

k+1 ) for i ∈ [1 : N ],

pN,y
k =

1

N

N∑
i=1

δξik .

Gordon et al. (1993); Del Moral (2004); Cappe et al. (2005); Chopin et al. (2020)

39 / 63



Potentials: heuristic

For simplicity (and only in this slide) let p0(y) be the posterior of the

inverse problem

Y = X0, X0 ∼ p0 ,

The marginals of the forward process initialized at py0 are

Xk
L
=
√
ᾱkX0 +

√
1− ᾱkZ, X0 ∼ py0, Z ∼ N (0dx

, Idx
) ,

and so

Xk
L
=
√
ᾱky +

√
1− ᾱk Z , Z ∼ N (0dy

, Idy
) .

This suggests that one relevant choice of potentials is

gyk(xk) = N (
√
αky;xk, (1− αk)Idy

) .
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Choice of potentials

More generally, we let the variance be a free parameter σ2
y,k.

Our proposal in the general case is

pyk(dxk) ∝ gyk(xk)pk(dxk) , gyk(xk) := N (
√
ᾱky;Axk, σ

2
y,kIdy )

This particular choice of potential allows us to compute in closed

form the auxiliary transition kernel ∝ gyk(xk)pk|k+1(dxk|xk+1) we

use for our particle approximations.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py450

Figure 6: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py150

Figure 7: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py100

Figure 8: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py80

Figure 9: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py70

Figure 10: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py50

Figure 11: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py40

Figure 12: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py20

Figure 13: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py15

Figure 14: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py2

Figure 15: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py0

Figure 16: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.
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Toy examples

⇝ 25 Gaussian mixture example with means

µi,j = (8i, 8j, . . . , 8i, 8j), (i, j) ∈ {−2, . . . , 2}

with unit convariance matrices. We randomly draw the weights of

the mixture and the forward operator A and σy for the inverse

problem ⇝ ∇ log pk is available in closed form.

⇝ 20 component mixture of translated and rotated Funnel

distributions. We learn the score and consider the ground truth to

be samples from parallel NUTS with very long chains.
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Toy examples

Figure 17: Sliced Wasserstein between samples of the target posterior and the

empirical measure returned by each method. Top: Gaussian mixture. Bottom:

Funnel mixture. We show the 95% CLT interval over 20 seeds.

DPS: Chung et al. (2023), DDRM: Kawar et al. (2022)
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Toy examples
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Imaging experiments

⇝ Diffusion models learned on different datasets of image sizes varying

from (64, 64, 3) to (256, 256, 3).

⇝ We run parallel SMCs with N = 64 particles.
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Super-resolution example
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Deblurring example
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Inpainting example
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Divide-and-conquer posterior

sampling



Sequence of distributions

Let (kℓ)
L
ℓ=0 be an increasing sequence in J0, nK with k0 = 0 and kL = n.

Consider

pykℓ
(dxkℓ

) ∝ gykℓ
(xkℓ

)pkℓ
(dxℓ) ,

with

gykℓ
(xkℓ

) = N (
√
αkℓ

y;Axkℓ
, σ2

y,kℓ
Idy ) .

L is typically much smaller than n.

This is the same sequence of distribution as in our SMC approach

but now we only consider a small number L of intermediate

distributions.

Our goal is to recursively sample from each one of them without

having to evolve N particles in parallel.

We also want to solve the “image inconsistency” problem observed

in our SMC method.
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Recursion

Since
pkℓ

(dxkℓ
) =

∫ { kℓ+1−1∏
j=kℓ

pj|j+1(dxj |xj+1)

}
pkℓ+1

(dxkℓ+1
) ,

we can write pykℓ
in terms of forward smoothing kernels, i.e.

pykℓ
(dxkℓ

) =

∫ { kℓ+1−1∏
j=kℓ

py,ℓj|j+1(dxj |xj+1)

}
py,ℓkℓ+1

(dxkℓ+1
)

where

py,ℓkℓ+1
(dxkℓ+1

) ∝ βy,ℓ
kℓ|kℓ+1

(xkℓ+1
) pkℓ+1

(dxkℓ+1
) ,

py,ℓj|j+1(dxj |xj+1) ∝ βy,ℓ
kℓ|j(xj) pj|j+1(dxj |xj+1) ,

and for all j ∈ Jkℓ, kℓ+1K

βy,ℓ
kℓ|j(xj) :=

∫
gykℓ

(xkℓ
)pkℓ|j(dxkℓ

|xj).
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DCPS summary

py
τ3

py,2
τ3

py,1
τ2

py
τ2

py,0
τ1

py
τ1

py
0

(L)

{py,1
t|t+1}

τ1
t=τ2−1 {py,0

t|t+1}
τ0
t=τ1−1

{py,2
t|t+1}

τ2
t=τ3−1

(L)
(L)

Figure 18: Illustration of idealized DCPS.

Starting at an approximate sample Xy
kℓ+1

from pykℓ+1

Use ULA initialized at Xy
kℓ+1

to obtain an approximate sample from

Xy,ℓ
kℓ+1

.

Starting from Xy,ℓ
kℓ+1

, simulate a Markov chain with transition kernels

(py,ℓj|j+1)
kℓ

j=kℓ+1−1

Repeat until the posterior of interest is reached.
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Backward function approximation

The first source of intractability are the backward functions βy,ℓ
kℓ|j .

This is the same problem as before, however note that now they are

expressed as an integral under pkℓ|j(·|xj) with j ∈ Jkℓ + 1, kℓ+1K
instead of p0|j(·|xj) for j ∈ J0, nK.

This is more convenient since we expect Gaussian approximations of

pkℓ|j(·|xj) to be more accurate than those of p0|j(·|xj).
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Backward kernel approximation

Assume again that forward=backward. Then for j ∈ Jkℓ + 1, kℓ+1K,

pkℓ|j(dxkℓ
|xj) =

∫
qkℓ|0,j(dxkℓ

|x0, xj)p0|j(dx0|xj) ,

Let p̂0|j(·|xj) be an approximation of p0|j(·|xj) and define

p̂kℓ|j(dxkℓ
|xj) =

∫
qkℓ|0,j(dxkℓ

|x0, xj)p̂0|j(dx0|xj)

For DPS (Chung et al., 2023), p̂0|j(dx0|xj) = δx̂θ
0|j(xj)(dx0).

For Song et al. (2023), p̂0|j(dx0|xj) = N (dx0; x̂
θ
0|j(xj), r

2
j Idy

).

In both cases, p̂kℓ|j(·|xj) is computable in closed form. We write

p̂kℓ|j(dxkℓ
|xj) = N (dxkℓ

;µkℓ|j(xj), σ
2
kℓ|j Idx

) .

where both the mean and variance depend on the approximation

used.
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Backward kernel approximation

Proposition
Assume forward=backward. For all ℓ ∈ J0, LK, j ∈ Jkℓ + 1, kℓ+1K,

W2(p̂kℓ|j(·|xj), pkℓ|j(·|xj)) ≤
√
αkℓ

(1− αj/αkℓ
)

1− αj
W2(p̂0|j(·|xj), p0|j(·|xj)) .

where
√
αkℓ

(1−αj/αkℓ
)

1−αj
< 1 and goes to 0 as j → kℓ.

We improve upon the previous approximations by performing

Gaussian approximations on intervals Jkℓ, kℓ+1K of moderate size.

Our approximation of the backward function is then

βy,ℓ
kℓ|j(xj) ≈ β̂y,ℓ

kℓ|j(xj) :=

∫
gykℓ

(xkℓ
)p̂kℓ|j(dxkℓ

|xj)

= N (
√
αkℓ

y;Aµkℓ|j(xj), σ
2
kℓ|jAA⊺ + σ2

y,ℓIdy
) .

54 / 63



FSK approximation

Recall that the quantities of interest are

py,ℓj|j+1(dxj |xj+1) ∝ βy,ℓ
kℓ|j(xj) pj|j+1(dxj |xj+1) ,

py,ℓkℓ+1
(dxkℓ+1

) ∝ βy,ℓ
kℓ|kℓ+1

(xkℓ+1
) pkℓ+1

(dxkℓ+1
) .

Given the previous approximation of the backward function, we replace

them instead with

p̂y,ℓj|j+1(dxj |xj+1) ∝ β̂y,ℓ
kℓ|j(xj) pj|j+1(dxj |xj+1) ,

p̂y,ℓkℓ+1
(dxkℓ+1

) ∝ β̂y,ℓ
kℓ|kℓ+1

(xkℓ+1
) pkℓ+1

(dxkℓ+1
) ,

Still, while now we can evaluate the density p̂y,ℓj|j+1(·|xj+1) we still

cannot sample from it.

We can approximately sample from p̂y,ℓkℓ+1
using ULA.
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Variational approximation I

For a fixed xj+1 we seek a mean-field Gaussian variational approximation

of p̂y,ℓj|j+1(·|xj+1) by solving

argmin
ry,ℓ
j|j+1

(·|xj+1)∈GD

KL(ry,ℓj|j+1(·|xj+1) ∥ p̂y,ℓj|j+1(·|xj+1)) ,

where GD := {N (µ,diag(σ)) : µ ∈ Rdx , σ ∈ Rdx
>0}.

We only learn vectors (µ, σ) that depend on the value of Xy,ℓ
j+1 and

do not seek to generalize as this incurs problem dependent, heavy

training.
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Variational approximation II

Letting ry,ℓj|j+1(·|X
y,ℓ
j+1) = N (µy,ℓ

j|j+1,diag(e
sy,ℓ
j|j+1)) where sy,ℓj|j+1 ∈ Rdx ,

KL(ry,ℓj|j+1(·|X
y,ℓ
j+1) ∥ p̂

y,ℓ
j|j+1(·|X

y,ℓ
j+1))

= −E
[
log β̂y,ℓ

kℓ|j(µ
y,ℓ
j|j+1 + diag(e

sy,ℓ
j|j+1)Z)

]
+
∥µy,ℓ

j|j+1 − µj|j+1(X
y,ℓ
j+1)∥2

2σ2
m|m+1

− 1

2

dx∑
i=1

(
sy,ℓj|j+1,i −

e
sy,ℓ
j|j+1,i

σ2
m|m+1

)
,

We perform the optimization using SGD.

Crucially, we normalize the gradients to ensure the stability of the

training procedure.

In practice, we only perform 2 or 3 SGD steps.
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Tamed ULA steps

We now turn to the Langevin steps on p̂y,ℓkℓ+1
.

As the marginals (pk)
n
k=0 approximate the true marginals of the forward

process initialized at the data distribution π, we may use

sθk(xk) = −(xk −
√
αkx̂

θ
0|k(xk))

/
(1− αk) ,

as a substitute for ∇xk
log pk(xk), following Dhariwal and Nichol (2021).

We sample approximately from p̂y,ℓkℓ+1
by running M steps of the Tamed

Unadjusted Langevin scheme (Brosse et al., 2019)

Xj+1 = Xj + γGy,ℓ
γ (Xj) +

√
2γZj , X0 = Xy

kℓ+1
, (1)

where

Gy,ℓ
γ (x) :=

∇ log β̂y,ℓ
kℓ|kℓ+1

(x) + sθkℓ+1
(x)

1 + γ∥∇ log β̂y,ℓ
kℓ|kℓ+1

(x) + sθkℓ+1
(x)∥

,

and set Xy,ℓ
kℓ+1

:= XM .
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Summary

Given an approximate sample Xy
kℓ+1

from p̂ykℓ+1
,

Run TULA starting from Xy
kℓ+1

to obtain Xy,ℓ
kℓ+1

approximately

distributed according p̂y,ℓkℓ+1
.

Sample (Xy,ℓ
j )kℓ

j=kℓ+1
: given Xy,ℓ

j+1 with j ∈ Jkℓ, kℓ+1 − 1K,

Find variational approximation ry,ℓj|j+1(·|X
y,ℓ
j+1).

Draw Xy,ℓ
j ∼ ry,ℓj|j+1(·|X

y,ℓ
j+1).

Repeat these steps.
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Toy experiments

Same 25 Gaussian mixture example.

DCPSM refers to our algorithm with M Langevin steps at the

beginning of each block.

We use L = 4.

We also estimate the empirical weights of each Gaussian mixture

mode and compare with the ground truth.

dx = 10, dy = 1 dx = 100, dy = 1

SW ∆w SW ∆w

MCGDiff 2.25/2.69± 2.07 0.32± 0.20 2.72/3.13± 1.76 0.42± 0.19

DPS 3.12/5.64± 8.45 0.20± 0.12 4.29/4.93± 4.85 0.35± 0.25

DDRM 2.66/3.06± 1.90 0.36± 0.16 5.97/6.26± 2.33 0.52± 0.19

DCPS50 1.95/2.70± 2.28 0.17± 0.25 4.40/4.72± 2.18 0.44± 0.16

DCPS500 1.26/2.59± 2.83 0.13± 0.30 2.81/3.22± 2.21 0.32± 0.18

Table 1: Results for the Gaussian mixture experiment. Results for the SW

distance are shown in median/mean ± standard deviation format.
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Super-resolution experiments

Original image Obervation y

DCPS

DPS

DDRM
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Inpainting and outpainting experiments
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Colorization experiments
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Colorization experiments
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Thank you!
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